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FOREWORD 

This book covers the syllabus for the Unit M3 for the new WJEC syllabus, and also, 

together with the companion books Ml and M2 Mechanics, provides complete coverage 

of the current WJEC Mechanics syllabus. Chapter 3 also completes the coverage of the 

MS Unit of the syllabus. 

The approach to second order differential equation in chapter 1 is relatively novel, in that, 

for the case when the auxilliary equation has complex roots, a justification, not involving 

complex numbers, is given of the method of solution. 

Unfortunately, not all the errors will have been detected during the proof reading. It 

would be appreciated if anyone coming across errors would inform the publishers so that 

corrections can be incorporated in subsequent editions. 





CONTENTS 

Page 

Chapter 1 

Second Order Differential Equation 

Chapter 2 

Rectilinear Motion 20 

Chapter 3 

Simple Hannonic Motion 42 

Chapter 4 

Circular Motion 84 

Chapter 5 

General Equilibrium of a Rigid Body 124 

Answers to Exercises 131 

Index 140 





Second Order Differential Equation 

Chapter 1 

Second Order Differential Equation 

After working through this chapter you should be able 

• to solve second order linear equations with constant coefficients, 

• to model simple "real life" problems as second order differential equations and 

solve the resulting equations. 

1.1 Second order linear differential equations with constant 
coefficients 

Examples of second order linear differential equations with constant coefficients are 

d2x dx 
2 +11-+30x 0 

dt dt 
d2y dy 
-+4-+8y=O 
dx 2 dx 

d 2 Y + 5 dy + 6 y 3x + 2 
dx 2 d1: 
d2 x dx 

2 +1l-+30x=11+5t. 
dt dt 

The test for linearity, is that the equation only contains the dependent variable and its 

derivatives and not products and functions of these. 

If the terms involving the dependent variable and its derivatives are gathered together 

on the left hand side, and the other items set on the right hand side, then, if the right 

hand side is zero, the equation is called homogeneous. 

If the right hand side is non-zero, then the equation is called non-homogeneous. 

The first two examples above are homogeneous equations whilst the other two are 

non-homogeneous. 

The general homogenous linear equation with constant coefficients has the form 

d2 x dx 
a-

2 
+ +cx=O, 

dt dt 

where a, b and c are constant. 

The general non-homogeneous equation with constant coefficients has the form 

d 2x dx 
a +b-+cx=!(t), 

dt 

where a, b and c are constant and! may depend on t but not x. 



Second Order Differential Equation 

The corresponding forms with dependent variable y and independent variable x are 

obtained by replacing x by y and t by x. 

The usual method of solving a non-homogeneous equation is a two-step one where 

the homogenous equation found by replacing the right hand side by zero is first 

solved. The method used for this is described in section 1.2. The solution of the non­

homogeneous equation is then found by combining the solution of the homogeneous 

one with another function. This process is described in section 1.3. The following 

basic result is fundamental in understanding the method of solution described in 

section 1.2. 

Basic result for linear homogeneous equations 

The most important fact about a second order linear homogeneous equation is that it 

has two independent solutions (i.e. one not being directly proportional to the other) 

and that the general solution is found by multiplying each of the independent 

solutions by a different arbitrary constant and adding them together. 

This means that ifby any kind of guess work you can find two independent solutions 

you will know that there are no more and that the general solutions can be found from 

these. A simple example is 
d2x 
--x=O 
dt 2 

you can check by substituting that et and are both solutions of the equation and 

therefore the general solution is Ae! + Be-', where A and B are arbitrary constants. 

For a first order homogeneous equation, which is obviously a particular case of a 

second order one, there is only one independent solution. 

1.2 Solution of linear homogeneous equations 
It is probably easier to understand the general method by first looking at a few 

examples. 

Example 1.1 

Find the general solution of 
dx 
--4x=0 
dt 

The equation implies that dx is proportional to x. You also know that the derivative 
dt 

of em, , where m is a constant, is proportional to em!. This suggests that x = aeml , 

where a and m are constants, may be a solution provided m is chosen correctly. 

Substituting x = aeml into the equation gives 

maeml - 4aeml 
= 0, 

2 



Second Order Differential Equation 

the only way that this can be satisfied without A being zero is for m to be equal to 4. 

Therefore a solution is e4f
• You know from the basic result quoted above that there 

cannot be another independent solution and so the general solution is x = ae4f 
• 

Example 1.2 

Find the general solution of 

d
2

x_ 4x =O 

The first thing to do is to see whether or not the technique used in Example 1.1 will 

still work. Assuming that x ae,"f gives 

m 2 ae"'f 4aeml
::::: 0 

therefore, for a nontrivial solution m 2 ::::: 4 and therefore m = ±2, so that two 

independent solutions are e21 and e -2f. The general solution is therefore 

x = Ae2f + Be-2f
, 

where A and B are arbitrary constants. 

Example 1.3 

Find the general solution of 

d2 d ~+3--Z+2y = 0 
dx 2 dx ' 

and the solution such that y = 1 and 1 for x == 0 . 
dx 

In this case, the independent variable is x and so the appropriate trial solution will be 
y == aelrlX

• You should always remember to check that you are using the correct 

variables. 

Substituting in the equation gives 

m 2 ae lnX + 3mae lllx + 2ae"IX = 0 

(m 2 +3m+2) ae lll
" 

and therefore, for a non-trivial solution (i.e. with a::f: 0) 

m2 + 3m +2 = 0 

The quadratic factorises as (m + 1 Xm + 2) and therefore the solutions are m = -1 and 

m = -2. The trial method has again produced the required two independent solutions, 

in this case e- x and e-2x
• The general solution is therefore 

y Ae-x + Be-2x
• 

3 



Second Order Differential Equation 

The next stage is to find the arbitrary constants so that the conditions at x 0 are 

satisfied. The condition on y gives 

A+B=l, 

also 
dy 

dx 
- 2Be-2X

, 

and therefore the condition on dYat x = 0 gives 
dx 

-A 2B 1 

Solving these equations gives B = -2 and A = 3. The required solution is therefore 

y 3e-x _ 2e-2X • 

Example 1.4 

Find the solution of 

d2x dx 
+2-+x O. 

dt 

Making the substitution x = aemt shows that m has to satisfy 

m 2 +2m + 1 = o. 
The roots of this quadratic are both -1 and therefore two independent solutions cannot 

be found. It is shown however in section 1.5 that if the root is repeated then if emt is a 

solution, then so is temt
• It is worth verifying this in this problem. If x = , then 

dx 

dt 
d

2 
X 2 -I -/ = - e +te , 

and substituting in the left hand side of the equation gives 
+ te- I + 2(e-1 

- te-t )+ te- I 
• 

This is zero, thus verifYing that 

IS 

x = (At + B)e-I 

Example 1.5 

Find the general solution of 

d2x 
+x=o 

dt 2 

is also a solution. Therefore the general solution 

Making the trial substitution x aeml gives 

m 2 ae ml + ae ml 0 

therefore m 2 + 1 = O. The roots of this equation are not real but if you have met 

complex numbers, then you will know that the roots are ± i where i r-I. 

4 



Second Order Differential Equation 

It is however not necessary to use complex numbers to make any progress but it is 

necessary to change tactics slightly. (A method using complex numbers is sketched in 

section 1.6). 

In the given equation the second derivative of x is a positive multiple of - x. You 

know that both the sine and cosine have this behaviour and therefore possible trial 

substitutions might be a cos pt or b sin pt where p is a constant. 

Making the substitutions gives 

- p 2a cos pt + a cos pt = 0 and - p 2bsinpt + bsinpt = 0, 

these equations will be satisfied if p = ±l. Therefore, taking p 1 gives the two 

independent solutions cos t and sin t. Taking p = -1 would give independent 

solutions cos(- t)and sin(- t), i.e. cos t and - sin!, which are multiples of the same 

independent solutions as before. This was to be expected since there can only be two 

independent solutions. Therefore since two independent solutions have been found, 

the general solution is 

x Acost+Bsint. 

The trial method involving sines and cosines works for all equations of the form 

d
2
x " -2-+ n -x =0, 

dt 

where n is real. In this case, independent solutions are cos nt and sin nt (you can 

check this by substituting in the equation) and the general solution is 

x Acosnt + Bsinnt 

Sometimes one of the alternative forms x a cos (nt + €) (a and € are constants 

such that A a cos €, B -a sin €), (b and ° are constants such that A b sin 0, 

B bcoso) are used, particularly in problems involving simple harmonic motion (see 

Chapter 3). 

Example 1.6 

Find the general solution of 

d 2x dx 
+2-+5x = 0 

dt 

If x :=. aem! is substituted with the above example, then, for a 7= 0, m must satisfy 

m2 +2m+5 = 0 

This quadratic does not factorise and using the formula for the solution of a quadratic 

gIves 

2± 
m=-----=-l± 

2 

The roots are not real and if the notation is i = is used, the possible roots 

are -1 +2i and -1 -2i. It is possible, however, as in the previous example, to avoid 

complex numbers. 

5 



Second Order Differential Equation 

It is shown in section 1.6 that the independent solutions turn out to be e -I cos 2t and 

e -( sin 2/ and we may now try to see how these arise. 

Straight forward use of the roots suggests that independent solutions would be 

e -1+rH and , but this is not particularly helpful unless you know what 

expressions like means. The clue to what to do is the factor e -( which suggests 

that x will be proportional to this. Therefore the substitution x = ze- I is made in the 

original equation. 

Using the product rule shows that 

dx dz 

dt dt 
-I +ze , 

and substituting into the differential equation gives 

d
2z 2 dz -/ -I dz, -e +ze + e 

dt dt 

This equation simplifies to 

+4z=0 

\ 

-I +ze , 

o 

and therefore it follows from the result quoted at the end of the previous example that 

independent solutions for z are cos 2t and sin 2t. Therefore independent solution for 

x are cos 2t and e -1 sin 2t with the general solutions being 

x Ae -( cos 2t + Be -I sin 2t 

The calculations was a bit long but the method works whenever the equation does not 

have real roots. It is shown in section 1.5 that the general solution when the roots are 

p ± , with q > 0, is ePI (A cos fit + B sin fit) . You do not need to have to carry 

out the detail calculation but can usually quote this general result. You should, 

however, understand how the result was derived. 

Example 1.7 

Find the general solution of 
d2 1) d1) 
_/ + 4 _eT + Sy = 0 
dx 2 dx ' 

and that solution such that y = 0 and dy 1 for x 0 . 
dx 

Making the substitution y = emx gives, as in other example 

m 2 +4m+S= 0 

The solutions ofthis quadratic are 

- 4 ± .J16 - 20 
m = =-2± 

2 

6 



Second Order Differential Equation 

Therefore, usmg the above general result and remembering that the independent 

variable is now x, the general solution is 
y e-2x(Acosx+Bsinx). 

The condition y = ° for x ° shows that A ° and then 

= e-2x(Bcosx 2Bsinx). 
dx 

Therefore Bland the general solution is 

y = smx. 

Summary of basic method 

In summarising the method, x will be assumed to be the independent variable and t the 

dependent one and therefore the general equation considered will be 

d2x dx 
a +b +cx 0, 

dt 

where a, b and c are constants. You have however to be prepared for other variables. 

(i) The first step is to make the trial substitutions x == Ae"'t , this means that for a non­

zero solution m has to satisfy 

am2 +bm+c 0. 

This is called the auxiliary equation and is formed by replacing the second 

derivative by m 2, the first derivative by m and the dependent variable by 1. 

(ii) (a) If there are two real roots mj and m2 ,of the auxiliary equation, then the 

general solution is x Ae l1l
,1 + Be""I. (This case occurs in Examples 1. 1., 1.2. 

and 1.3) 

(b) If there is only one repeated root m, then the general solution is 
x eml (A + Bt). (This case occurs in Example lA). 

(c) If the roots are not real but of the form p ± H ' where q > 0, the general 

solution is x epr(Acosjqt + Bsinjqt). (This case occurs, with p 0, in 

Example 1.5 and, for p::l= 0, in Examples 1.6 and 1.7). 

(d) The special case whenp ° corresponds to the differential equation 

d
2

x ° -?-+qx = , 
dr 

whose general solution is therefore x A cos jqt + B sin jqt . 

7 
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Exercises 1.1 

Find the general solutions of the following differential equations 

d2x 
1 - 9x =0. 

2 

3 

4 

5 

6 

7 

dx 
3-+ 2"t'=0. 

dt 

d 2x dx 
- -S + 17x =0. 
dt 2 dt 

dv 
') 6 -' + Sy O. 

dx~ dx 

d2 
-.2:'. + S + SOy = 0. 
dx 2 dx 

6 d
2

x _ 11 dx + 4x = 0. 
dt 

+ 25x =0. 

Find the solutions of the following differential equations under the conditions stated. 

d QE 
8 + 16y = 0, y 3, dx = ° for x n. 

d 2x dx dx 
9 

dt 2 
4-+20x O,x 2, dt = 4 for t O. 

dt 

10 
d2 x dx 
-2 +7 + lOx=0,x=5, dt 
dt dt 

11 for t 0. 

11 QE O,y ° QE = 1 for x +Sdx+ 41y 
'dx 

n. 

12 
dZx dx 

6x = 0, x = 5, dt 5 for t = O. 
dt 2 dt 

13 + S~+ 20y - QE 4 for x = O. 
dx2 0,y-2, dx 

1.3 Solution of inhomogeneous equations 
The method of solution depends on the following fundamental result: 

The general solution of a linear inhomogeneous differential equation (i.e. one 

with a non-zero right hand side) is the sum of the solution of the corresponding 

homogeneous equation (i.e. with zero right hand side) and any solution of the 

inhomogeneous equation. 

8 



Second Order Differential Equation 

The solution of the homogeneous equation is called the Complementary Function 

(C.F.) and any solution ofthe inhomogeneous equation is called the Particular Integral 

(P.I.). Therefore 

General solution Complementary Function + Particular Integral. 

It does not matter how the Particular Integral is found as long as you check that it is a 

solution. In your course, if the independent variable is t, then the only right hand sides 

that you will come across will be of the form At + B, where A and B are constants i.e. 

the equations will be of the form 

d 2x dx 
+ b- + cx = At + B. 

dt 

The method of finding the Particular Integral is very simple, you assume that, if A 1= 0, 

x Ct + D, and if A = 0, x D. The appropriate form is substituted in the equation 

and the constants C and D chosen so that the equation is satisfied. In some particular 

cases (in fact when one of the roots of the auxiliary equation is zero) you may find 

this substitution does not work. In that case try x Ct 2 + Dt. 

Summary 

(a) Find the general solution of the corresponding homogeneous equation - the C.F. 

(b) By making the trial substitution x = Ct + D (or, exceptionally, if it does not 

work, x Ct 2 + Dt) find the P.r. 

(c) Write the general solution as C.F. + P.I. 

Example 1.8 

Find a particular integral for the differential equation 

d2x dx 
- + 8 - + 4x 56 + 20t. 
dt 2 dt 

Making the trial substitution x Ct + D in the left hand side of the equation gives 

8C+ 4(Ct + D) = 56 + 20t. 

The coefficients of t have to be the same on both sides of the equation, and also the 

constant terms, and therefore C = 5, and 8C + 4D 56 so that D = 4. A particular 

integral is therefore 5t + 4. 

Example 1.9 

Find the general solution of 

d2x dx 
2 + 3 - = 24 + 18t. 

dt 

The first step is to solve the equation with zero right hand side, the auxiliary equation 

is 

2m 2 + 3m= 0. 

9 
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The solutions are m = 0 and m - ~ so the C.F. is A + Be 

Making the trial substitution x Ct + D into the left hand side of the differential 

equation gives 3C= 24 + 18t. 

Since C is a constant this equation cannot be satisfied and therefore the trial 

substitution x Ct 2 + Dt is made into the right hand side of the differential equation 

giving 

4C + 3(2Ct + D) 24 + 18t. 

The coefficients of t and the constant terms have to be the same on both sides of the 

equation so that 6C = 18 and 4C + 3D 24 and therefore C 3 and D 4. 

The general solution is therefore 

x A+Be + 3t 2 + 41. 

This example is the exceptional case mentioned earlier. 

Example 1.10 

Find the general solution of 

d2 d ~ +32 + 2v 16+4x, 
dx 2 dx " 

and that solution such that y 12 and s.IL -5 for x = O. 
dx 

The first step is to find the general solution ofthe equation with zero right hand side. 

This has already been done in Example 3.11 and the general solution is Ae-x + Bc2X• 

Making the trial substitution y Cx + D in the left hand side of the equation gives 

3C + 2(Cx+ D) = 16 + 4x. 

The coefficients of x have to be the same on both sides of the equation and therefore 

C= 2, and 3C + 2D 16 so that D 5. The general solution of the equation is 

therefore 

y = Ae-x + Be-2X + 2x + 5. 

The final step is to find the constants so that the conditions for x 0 are satisfied. 

These require 

A + B + 5 = 12 and - A 2B + 2 = - 5, 

the solution of these equations is A = 7, B = O. 

The complete solution is 

y = 7e-x +2x+5. 

10 
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Exercises 1.2 

Find the general solutions of the following differential equations. 

1 d
2

x -5
dx

+6x 12. 
dt 2 dt 

2 

3 

4 

5 

6 

d2x dx 
6 + 5x = 3 + lOt. 

dt 2 dt 

d 2x dx 
- + 10- + 26x = 52. 
de 2 dt 

d2x dx 
+ 2-+ 10x = 30t 34. 

dt 

d
2 4L --.2:'.. + lldx + 24y = 57 + 72x. 

dx 2 

Find the solutions of the following differential equations under the stated conditions 

d2 x dx dx 
-2 + 8 - - 20x -60, x 8, dt 4 for t = O. 
dt dt 

7 

8 
d2x dx dx 

+ 4 dt + 20x = 80, x = 7, dt - 6 for t = O. 

9 4L 10+3x,y=4, dx 4forx O. 

10 dx 2 +4~+20y 80,y=7, ~=-6forx=0. 

1.4 Problems involving second order equations 
In some instances, primarily in Economics, the actual model involves more than one 

equation. If, for example, x denotes the price of a good and D and S denote the 

demand (quantity required at price x) and supply (amount supplied at price x), then in 

one economic model, the rate of change of price is asserted to be directly proportional 

to the excess of demand over supply (price increases when demand exceeds supply). 

This gives 

: = k(D-S), 

where k > O. In order to complete the modelling, some infonnation has to be given 

about D and S. The usual assumption is that both are of the a + bx and this gives a 

first order differential equation for x. In slightly more complicated models D and S 

are assumed to depend on the time derivatives of x and this leads to second order 

differential equations. Very often a model may be posed in a way that leads to two 

1] 
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first order equations involving more than one variable and one of the variables has to 

be eliminated thus giving a second order equation. 

Example 1.11 

This is a simple model of investment due to Samuelson. The assumptions are 

(i) the rate of change of capital at any time is equal to the investment at that time, 

(ii) the rate of change of investment at any time is s times the difference between the 

capital at that time and an equilibrium value A. Investment increases when the 

capital level is less than A and decreases when the level is ?bove A. 

Find the differential equation satisfied by the investment and comment on the 

behaviour of the capital. 

There are two "unknowns" i.e. dependent variables, namely the investment and the 

capital. These will be donated by I and C respectively. Assumption (i) gives 

dC I 
dt 

whilst assumption (ii) gives 
dI 
-= -sCC A) 
dt 

The second equation satisfies the condition that I decreases (increases) for C > A 

(C<A). 

Differentiating the second equation with respect to t gives 

d2I dC 
-=-s-
dt 2 dt 

and substituting from the first equation gives 

d2I 
-sI. 

dt 2 

The auxiliary equation for this differential equation is m 2 -s with roots and 

therefore, from the summary In section 3.5, its general solution IS 

B cos Fst + C sin Fst . 

The capital is therefore 

A-! dI A ~S (-BsinFst + CcosFst). 
s dt vS 

Both the sine and cosine terms have period ~ and therefore the capital oscillates 

with this period. 

12 
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Example 1.12 

The amount of steel ingots that a firm has in stock at any time is denoted by x and the 

firm has an optimum amount X of ingot that it wishes to retain in stock. 

Its pricing policy is that the rate of increase of price is equal to the difference between 

x and X with the price increasing for x < X and decreasing for x > X The rate of 

increase of stock is the difference between the rate Q at which ingots are produced 

and the rate S at which they are sold. The firm assumes in its forecasting that, in 

appropriate units, Q and S are given in terms of the price p by 

S 120 35p -10 dp and Q = 48 lip. 
dt 

Find the differential equations satisfied by p and show that the model predicts p will 

tend to a fixed value and find this value. 

The pricing policy gives 

dp =(X -x) 
dt 

Also, the condition governing the rate of increase of stock gives 

dx = Q _ S = -72 + 24 p + 10 dp . 
dt dt 

Differentiating the first differential equation gives 
d2p dx 

dt 2 dt 

and therefore substituting for dx 
dt 

d2 d ~+IOJe.+24p 72 
dt2 dt 

The auxiliary equation is 

m 2 + IOm + 24 0, 

Its roots are ~6 and -4 and therefore the general solution is ae 41 + 

Since the right hand side is constant, the particular integral will be a constant and 

therefore substituting p = C, where C is a constant, in the equation gives C = 3 and 

therefore 
p = 3+ae-41 + 

The exponentials tend to zero for t and therefore the price tends to 3. 

Modelling problems in Mechanics using differential equations 

Detail modelling of various problems in Mechanics will be considered in Chapters 2 

and 3, but it is worth examining briefly the basic principles involved. Unlike the 

other problems considered, the basic laws governing mechanical problems are well 

known. Essentially for a particle in rectilinear motion, the important points are to find 

the total force acting and put this equal to mass x acceleration. 

13 
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It is extremely important in modelling problems to choose a particular reference 

direction, usually the positive x direction, and calculate the force in that direction. 

The acceleration is d 2 X and therefore mUltiplying this by the mass and putting it 

equal to the force in the positive x direction will produce the required differential 

equation. It is however necessary to be extremely careful with signs, this is shown in 

the following example. 

Example 1.13 

A particle of mass O.2kg is free to move along the x-axis under the action of a force 

directed towards the origin and of magnitude 4d N, where d m is the distance of the 

particle from the origin. The particle is also subject to a resistive force (i.e. in the 

opposite direction to its motion) of magnitude 2v N when it is moving with speed 

v ms -l. Find its equation of motion. 

If the particle is on the positive x-axis, then its distance from the origin is x m, the 

attractive force is to the left as shown in the diagram and of magnitude 4x N, the force 

in the positive x direction is therefore -4x N. lfthe particle is on the negative x-axis, 

then its distance from the origin is (-x) m, is positive), the attractive force is to 

the right as shown in the diagram and of magnitude 4(-x) N, the force in the positive x 

direction is therefore again -4x N. 

• • • 
p o p 

(-4x) N -4xN 

If the particle is moving to the right then dx is positive and is the speed of the 
dt 

particle, the resistive force is therefore to the left and equal to 12 dx N, the force in 
dt 

the positive x direction is therefore -12 dx N. 
dt 

If the particle is moving to the left then dx is negative and the speed of the particle is 
dt 

- dx, (which is positive) and the resistive force is to the right and equal to 
dt 

12( -: J N. The force in the positive x direction is therefore 12(: J N. 

14 
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Therefore the equation of motion is 

d2 x dx 
0.2-=-4x-12-. 

dt 2 dt 

This type of equation can be solved as in section 1.2 and the resulting motion is 

referred to as damped harmonic motion. This is looked at in detail in Chapter 3. 

It is very important when formulating a new model, to look very carefully at the signs 

as above. If the force had been proportional to d 2 
, for example, then the differential 

equations found would have been different for x> 0 and x < O. 

1.5 Justification ofthe methods for equal and for non-real roots 
The general type of equation considered is 

d2x dx 
a 2 +b-+cx 0, 

dt dt 

where a, band c are constants. 

The auxiliary equation is 

am2+bm+c 0 

with solutions 

b±~b2 -4ac b + ___ _ 
2a 2a - 2a 

Equal Roots 

For equal roots b2 = 4ac and the only distinct root of the auxiliary equation is _ b 
2a 

and this is denoted by p. It is now necessary to show that x = te Pt is also a solution. 

The product rule shows that 

dx 
dt = ept (1 + pt), 

Substituting these in the left hand side of the differential equation gives 

a(2p+ p 2 t)+b(1+ pt)+ct = b+2ap+(c+ p 2 a+ pb) t, 

Slllce p b, the right hand side of the equation simplifies to (c b
2 lt . 

~ ~J 

This vanishes and hence te Pt ~ te-~: J is also a solution of the differential equation. 

Non-real (Le. complex) roots 

In this case when b 2 
- 4ac < 0 and the roots are p ± H, where p = - band 

2a 

4ac b2 

q = and is positive. The first step in deriving the form given in the 

15 



Second Order D(fferential Equation 

summary section 1.2 , as in Example 1.6, is to write x as ze Pt
• If you want to try 

this for any particular equation, then the coefficient of t in the exponential is minus 

one half the ratio of the coefficient of the first derivative to that of the second 

derivative. 

Using the product rule 

: ept: + pz) 

Substituting these in the equation gives 

a(d
2

: + 2p dz + p2Z 1+ bl( dz + pz) + cz O. 
dt dt J d! 

Substituting p b shows that the coefficient of dz is zero and the equation 
2a d! 

becomes 

O. 

This simplifies on substituting for p and using the definition q = 4ac ~ b
2 

to 
4a 

d2 z 
-2 +qz=O. 
dt 

Making the trial substitution z = A cos mt + B sin m! shows that 

m 2 +q = 0, 

and therefore m fi, giving the general solution z A cos fit + B sin fit . 
Therefore the general solution for x is (A cos fit + B sin fit ), thus confirming he 

assertion made in the summary in Section 1.2. 

For those familiar with complex numbers the following is an alternative derivation. 

The roots of the auxiliary equation can be written as p ± ifi. The general solution is 

therefore Ce p
! ei.[ril + De P! e -i.[ri!. This can be rewritten, using the result 

e±iiJ = cos 8 ± i sin 8 

as eP1 [c(cosfit + isinfi!)+ D(cosfit isin fit)J 
This can be rewritten as 

eP
! (A cos fit + B sin fit), 

where A C+Dand B=i(C-D). 
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Miscellaneous Exercises 1 

1. Find the general solution of 

d2 y dy 
dx2 + 2 dx + 10y = 30x + 16 

2. Find the general solution of 

d 2 y dy 
-+7-+12y 36 
dx2 dx 

3. (a) Find the general solution of 

d2x dx 
+ 15 - + 36x k where k is a constant. 

dt 

Find also that solution such that x = 0 and dx 0 at t = O. 
dt 

(b) Initially a community consists of N individuals all of whom are susceptible to a 

disease. Subsequently each member of the community may be placed in one, 

and only one, of the following categories. 

• Individuals who are susceptible to the disease, 

• individuals currently infected by the disease, 

• individuals recovered from the disease and not open to further infection, 

• individuals who have died from the disease. 

At time t after the infection strikes, x denotes the number that have died and y 

the number currently infected. The death rate and the recovery rate are such 

that, at any instant, the number that have recovered is twice the number who 

have died by that time. Write down, in terms of x and y and N, the number of 

susceptible people at time t. Given that, at any instant, the rate at which 

susceptible people become infected is (in appropriate units) three times the 

number of susceptible people present at that instant, show that 

3~+ dy =3(N-3x-y) 
d! dt 

Given that the death rate of infected people is four times the number of infected 

people, express dx in terms of y and hence show that x satisfies the equation in 
dt 

(a) for a particular value of k, which should be found. Assuming no one dies 

from other causes, state how many people will eventually die from the disease. 

4. (a) Find the general solution of the differential equation 

d 2x dx 
+4 +8x =0. 

d! 

(b) In economic modelling of investment it is assumed, with a particular choice of 

units, that 

(i) the rate of increase of excess capital k is equal to the investment I, 
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(ii) the rate of decrease of the investment I is equal to the sum of 8k and 41. 

Express dk. in terms of I, and dI in terms of k and I, and hence show that k 
dt dt 

satisfies the differential equation in part (a). Comment on the behaviour of k 

for large values of t. 

5. Find the solution of 

d2 d ~+2L+17p 34, 
dt 2 dt 

such that p 2.5 and dp ° when t = 0. 
dt 

In an economic model, the demand D (the amount required) for a particular 

item is given by 

d 2 dp 
D=6 ;. +7-+6p+16, 

dt d! 

where p is the price in pounds of the item at time t months. Similarly the 

supply S (the amount available) is given by 

S = 7 + 9 dp = 23 p - 18 . 
dt 

_ dp 
Given that S D and that, at t 0, P - 2.5 and - = 0, find 

dt 

0) the price after a long time, 

(ii) the lowest price at which the item can be bought and the time when this 

would be possible. 

6. The function y satisfies the differential equation 

d 2 d -? 41 +(4 k)y=k(k+lX6x+4) 
dx dx 

where k is a constant, and, when x = 0, y 

Find y in the three cases 

(a) k=1, 

(b) k -1, 

(c) k 0. 

7. Find the solution of 

d
2

x = 16x 

dy 
5 and -=-1. 

dx 

with x 
dx 

a and -
dt 

at t = 0, where a and b are positivc constants. 

Verify that if a > ~, then x will never become zero and dx will be zero for a 
4 dt 

positive value of t. 
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It is assumed in a simple "war game" that there are two military force, the' A­

force' and the 'B-force', engaged in combat. The numbers in the A-force and 

the B-force at time t are denoted by x and y respectively. It is also assumed 

that the rate at which the number in the A-force is decreasing is equal to twice 

the number in the B-force at that time and that the number in the B-force is 

decreasing at a rate equal to eight times the number in the A-force at that time. 

Show that x satisfies the above differential equation. 

The game is won when one of the forces is annihilated and the other is not. 
Given that xoand Yo denote the numbers in the A-force and the B-force 

respectively at time t 0, find a condition on x 0 and y 0 which will ensure that 

the A-force wins the game. 
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Rectilinear Motion 

Chapter 2 

Rectilinear Motion 

After working through this chapter you should 

• be able to solve problems of rectilinear motion where the acceleration is a function 

of displacement or velocity, 

• be able to solve simple problems of resisted rectilinear motion, 

• be aware of some of the assumptions made in modelling resistive forces. 

2.1 Acceleration dependent on displacement 
You have already seen in Ml Chapter 4, how to solve problems of motion in a straight 

line where the acceleration depended on time. In this chapter problems where the 

acceleration depends on displacement or on velocity will be considered. The basic 

difference between these problems and those you met in Ml is that the problems now 

involve differential equations which need the methods described in Chapter 1 to solve 

them. In Ml the acceleration a was defined by 

dv 
a = 

dt 

where v is the velocity in the positive x direction and is defined by 
dx 

v dt' 

There is another expression for a which is useful for problems where the acceleration 

is given in terms of the displacement and this is 
dv 

a =vdx" 

This is proved by using the identity 
dv 
dt 

which follows from the chain rule. 

dx 
dx dt' 

Substituting v for dt gives the required expression for a. 

The general approach is possibly most easily understood by looking at a particular 

example. 
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Example 2.1 

When the displacement of a particle from a point 0 is x m its acceleration is e2X ms-2. 

At time t = 0, the particle passes through the origin moving with speed 1 ms-1 in the 

direction of increasing x. Find 

(a) its speed when its displacement is x m, 

Cb) its displacement at time t s. 

The equation of motion of the particle is 

d
2
x ~ H 
2 ~ e , 

dt 

this equation cannot be integrated directly with respect to t since the right-hand side 

involves x which is not known in terms of t. However, the equation of motion can, 

using the expression derived above, be rewritten as 

The left-hand side is equal to dr ±v' j 
.dx 

l 

l.e. 

Both sides of this equation can be integrated with respect to x giving 

1 2 1 H ZV "2 e + c, 

where c is a constant. Substituting v = 1 when x 0 shows that c = O. Therefore, on 

taking the square root, 

v eX. 

It is necessary to be very careful in choosing the correct sign for the square root in 

problems like this, in this case the positive sign has to be chosen since the particle was 

moving in the positive x direction when x = 0 and therefore 
dx 
dt eX. 

This is a differential equation to determine x and it can be solved by separation of 

variables. Separating the variables gives 
dx 

e~xdt = 1, 
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which on integrating with respect to t becomes 

J e -x dx = J dt . 

Carrying out the integrations gives 

e-x t + a, 

where a is a constant. Substituting x 0 and t = 0 shows that a = -1, therefore 

x -In (1 t). 

The solution is only valid for t < 1 as x becomes infinite for t 1. The example is not 

a physically realistic one but the mathematics is sufficiently simple for the steps to be 

clear. 

Basic method 

When the acceleration is given in terms of the displacement the following are the 

steps to be followed:-

(1) Write the acceleration as 

dv 
v-

dx 

(ii) Integrate the resulting equation with respect to x. 

(ii) Use any given conditions to find the arbitrary constant produced by the integration 

in (i) Alternatively it may be quicker to integrate between suitable limits. 

(iii) You will now have an expression for . Take the appropriate square root so that 

your value for v is consistent with the given conditions. 

(iv) The result of (iii) will be of the form 
dx 

v dt = F(x), 

where F is known in terms of x. 

(v) The equation found in (iv) can be solved by separating the variables and 

integrating with respect to t giving 

f rtJ Idt 

Carrying out the integrations gives t in terms of x. If possible the resulting equation 

should be inverted to give x in terms of t. 

In many cases the integration in (v) may prove very difficult and it may be necessary 

to use a numerical method like Simpson's rule to go any further. 

Therefore very often, when the acceleration is given in terms of the displacement, the 

most that can be found easily is a relation between the velocity and the displacement. 

The basic method is equivalent to using the work-energy principle as described in M2. 
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If the velocity, rather than the acceleration, is given in tenns of the displacement then 

the calculation will start at Cv). 

Example 2.2 

The acceleration due to gravity at a point away from the earth is directed towards 0, 
2 

the centre of the earth, and is equal to g~ ,where a denotes the radius of the earth 
x 

and x the distance from O. The fuel in a rocket is completely exhausted when it is at a 

distance b from the earth's centre and the speed of the rocket at that time is u. 

Assuming that the rocket moves along the straight line to it from 0, find its speed 

when it is at a distance of 5: from O. 
ga 2 

The acceleration in the direction of increasing x is --2- and therefore the equation 
x 

of motion can be written as 

dv v­
dx 

If the required velocity is denoted by V then integrating the left- hand side with 

respect to v from u to V and the right-hand side with respect to x from b to 5: gives 

2ga 2 

Sb' 

and therefore the required speed is [ u 2 -

2ga 2 

This will only be valid for u 2 > --
5b 

If u 2 < 2ga
2 

then the rocket will have come to rest before reaching the point at a 
5b 

distance of 5: from 0 and will then return to earth. 

Example 2.3 

When the displacement of a particle from a point 0 is x m its acceleration is 2~ ms 
x 

in the direction of decreasing x. At time t 0, the particle passes through the point 

x = 2 moving with speed -J2 ms -1 in the direction of increasing x. Find 

(a) its speed when its displacement is x m, 

(b) its displacement at time t s. 
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The equation of motion of the particle is 

24 
4 • 

x 

Integrating this equation with respect to x gives 
1 2 8 v = - + c 
2 x 3 

' 

where c is a constant. Substituting v -fi when x = 2 shows that c O. 

taking the square root, 
4 

v = 

on 

The positive sign has been chosen since the particle was moving in the positive x 

direction when x 2. Therefore 

Separating the variables gives 

dx 
dt 

1dx 
x 2

dt =4, 

4 

which becomes, on integrating with respect to t, 

f} dx 4Jdt. 

Carrying out the integrations gives 
2 1 
-Xl = 4t+a, 
5 

where a is a constant. Substituting x = 2 for t = 0 shows that a 

the equation gives 

x 

Example 2.4 

0i .. 
5 and mvertmg 

The acceleration in the positive x direction of a particle free to move along the x axis 

is _0)2X , where 0) is a constant. At time t = 0 the particle is at rest at the point x a. 

Determine its subsequent displacement. (This is an exanlple of simple harmonic 

motion which you will encounter in detail in Chapter 3). 

24 



Rectilinear Motion 

In this case the equation of motion of the particle is 

dv 
v-

dx 

d l v 2 

dx 

Integrating this equation with respect to x gives 

-olx. 

v2 
= - x 2 + c, 

where c is a constant. Substituting v = 0 when x a shows that c ID2 a2• Therefore, 

on taking the square root, 

v = ID 

the negative sign has been chosen since the particle was at rest at x = a and its 

acceleration is in the negative x direction and therefore the particle will start moving 

the negative x direction. Therefore 
dx 
dt 

~ 2 2 -ID Cl - X • 

Separating the variables and integrating gives 

J 
dx 

ID~a2 _x2 
ID J d t. 

The integral with respect to x can be evaluated so that 

sin-{ ~) IDt + b, 

where b is a constant. Substituting x Cl when t = 0 shows that b 

x a cos IDt. 

Exercises 2.1 

re 
- and finally 
2 

1 The acceleration of a particle moving along the x axis is 4x ms -1 in the negative x 

direction when its displacement from the origin is x m. The particle is released 

from rest at the point x = 3. Find its speed when x = 2. 

2 A particle moves along the x axis and its acceleration is 8x 3 ms -2, in the direction 

of increasing x, when its displacement from the origin is x m. It is moving in the 

direction of increasing x with speed 3 ms -1 when it passes through the origin. 

Find the distance travelled until its speed becomes 6 ms -I • 

3 When a particle has a displacement of x m from the origin its acceleration in the 

negative x direction is ~ ms . Its velocity when x 0.25 m is 3 ms -I in the 
2x 

positive x direction. Find the speed in terms of the displacement and determine 

where the particle first comes to instantaneous rest. 

25 



Rectilinear Motion 

In questions 4 to 8 the acceleration of a particle moving along the x axis is denoted by 

j(x) ms -2 when its displacement from the origin at time t s is x m and v denotes the 

velocity component in the positive x direction. 

4 f= 16, v = 2, for x = 2 when t= O. Find v in tenns ofx and x in terms oft. 

5 (x + 5), v 5, for x 0 when t O. Find v in terms of x and x in terms of t. 

6 f= e 2X
, v=2,forx= In2whent=0. Findvinterms ofx and x in terms oft. 

7 3Vx, v 0, for x 0 when t O. Find v in terms of x and x in terms of t. 

8 f = 1 v = 0, for x = 1 when t = O. Find the time taken to reach the point x = ¥ 

9 The acceleration due to gravity at a point at a distance of x m above the earth's 

centre is directed towards the centre of the earth and is of magnitude 

[
6.4 X106\j2 

10 x ms -2. The earth may be assumed to be a sphere of radius 

6.4 x 10 6 m. Find the maximum height reached above the earth's surface by a 

rocket projected vertically upwards from the earth's surface with speed 1000 ms -1 . 

The rocket is to be modelled as a particle projected vertically upwards in vacuum. 

2.2 Acceleration dependent on velocity 
Most problems involving resisted motion reduce to ones where the acceleration is 

given in terms of the velocity. The resulting differential equations have to be solved, 

usually by using the method of separation of variables. 

There is a standard general approach which has to be followed and, as in the previous 

section, this is possibly best understood by working through a particular example. 

Example 2.5 

The acceleration of a particle moving with speed v ms-J at time t s is 1 ms -2. When 

t = 0, v 1 and the particle is at a distance of 4 m from a point O. Find the speed and 

displacement of the pili-ticle from 0 at any subsequent time and also its speed when at 

a distance of 6 m from 0. 

The equation of motion is 

d2x dv 

dt 
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. h· . I· d
2

x d h 1 b hI· c dv m t IS case usmg acce eratlOn as -2 oes not e p ut tea ternatlve ~orm as -
dt dt 

gives a differential equation which can be integrated by separation of variables. 

Therefore f v 2 dv f dt . 

Carrying out the integrations gives 

3 

where c is a constant. Substituting v 

t+ c, 

1 
1 when t = 0 shows that c = 3. 

1. 
3 

Therefore v = (l + 3t) . 

The next step is to find the displacement, x m. Substituting~ for v gives 

dx 
dt 

1. 
3 

(1+ 3t) . 

This can be integrated directly with respect to t, you can do this either by introducing 

a constant or integrating between limits. The second method is slightly quicker and 

integrating from tOto t = t gives, since x = 4 when t 0, 
I 4 

3 -1 t -
3 

x-4= f(I+3w) dw 
o 4 

4 

and therefore x 
3 + 15 

4 

The next step is to find the speed when x = 6. Substituting x 6 in the expression for 
4 I 

x gives (1 + 3t)1 9 and therefore (1 + 3t)1 -J3 so that substituting for t in the 

expression for ~ gives the required speed as -J3 ms-I. 

If the speed had been required for a general value of x then inverting the expression 

for x gives 

and therefore 

(1 + 3t) 

dx 
dt 

3 
"4 

(4x - 15) 
1. 
4 

(4x -15) . 

If the question had only required the relationship between v and x then a quicker 

method would have been to use the expression v ~: for the acceleration. In this case 

the equation of motion would be 
dv 1 

vdx 
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The method of separation of variables gives 

fv
3
dv = fdt, 

integrating the left hand side from v 1 to v v and the right hand side from x = 4 to 

x x gives 

v4 1=4x-16, 

which is the result found earlier. 

Whenever the acceleration is given as a function of speed the steps in the calculation 

will be exactly the same as in Example 2.5. 

General approach 

(i) Use the acceleration in the form dv in the equation of motion, separate the 
dt 

variables and integrate, either introducing a constant cof integration or integrating 

between limits. If an arbitrary constant is introduced then use given conditions to 

find it. If the acceleration is directly proportional to v then an alternative is to use 

the substitution v emt. 

(ii) This will give v in terms of t, this can be integrated using v = : to find x in 

terms of t. Again either integrate between limits or introduce an arbitrary 

constant. If an arbitrary constant is introduced then use given conditions to find 

it. 

(iii) If a relation between v and x is required then 

either 

(a) Invert the solution found in step (ii) to give t in terms of x and substitute the result 

in the expression for v found in step (i). If it is not possible to carry out this 

inversion it may be possible to invert the expression for v to find t in terms of v 

and therefore x can be found in terms of v. 

or 

(b) Use the acceleration in the form v: in the equation of motion, separate the 

variables and integrate, either introducing a constant of integration or integrating 

between limits. If an arbitrary constant is introduced then use the given conditions 

to find it. 
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Example 2.6 

The retardation of a particle moving with speed v ms -I at time t s is 3v 3 ms -2. When 

t 0, v = 2 and the particle is passing through the fixed point O. Find 

(a) the displacement of the particle at any subsequent time, 

(b) the speed of the particle when its displacement from 0 is x m. 

In this case the acceleration is negative and the equation of motion is 
dv 

-3v 3
, 

dt 

carrying out the separation of variables as in step (i) gIves 

Jd~ = -3 Jdt. 
v 

Integrating the left-hand side from v 2 to v v and the right-hand side from tOto t 

= t gives 

1 \ _ 1 \, = 3t. 
2 v- 4/ 

Solving for v in terms of t gives 

v = 

Replacing v by : as in step (ii) gives 

dx 
dt 

2 

2 

Integrating this equation from tOto t t gives, using x 0 for t 0, 

_ .vI + 24 t 1 
x - 6 6' 

The above equation can be solved to give t in terms of x and the result substituted in 

the expression for :. Alternatively the acceleration can be written as v dx so that 

dv 
v dx = - 3v3 

Separating the variables gives 

Integrating the left-hand side from v = 2 to v = v and the right-hand side from x = 0 to 

x x shows that 

3x. 
v 2 

. . f' 2 Solvmg for v m terms 0 x gIves v = 1 + 6x' 
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Exercises 2.2 

Questions 1 to 5 refer to a particle P moving along the x with acceleration Cl ms 

in the positive x direction, x m denotes its displacement from the origin at time t s and 

v ms -1 its velocity in the positive x direction at that time. 

1 

2 

3 

4 

5 

a -6v, x = 3 and v 5 for t = O. Find x in tenns of t. 
1 

for t = O. Find v in tenns of x. a - x = 4 and v 3 v' 

v2 

2 for t = O. Find v and t for x 8. a -- x = 0 v 4 ' , 

o and v = 0 for t = O. Find v in tenns oft. a = 4(2 - V)2 , x 

Cl = -2-rv, x o and v 4 for t = O. Find the time taken to come to rest and 

the distance travelled in that time. 

6 The retardation of a particle moving in a straight line is proportional to the cube of 

its speed. The speed of the particle drops from 10 ms -I to 5 ms -J in 9 seconds, 

find the distance travelled in this time. 

7 The acceleration of a particle moving in a straight line is inversely proportional to 

its speed. The speed of the particle increases from 5 ms -I to 15 ms in 1 minute. 

Show that the distance travelled in this time is 650 m. 

8 The retardation of a particle moving on a straight line is proportional to the 

n th power of its speed. Show that for n < 2 the particle only moves a finite 

distance. 

2.3 Modelling resistance to moving bodies 
Most problems on moving bodies relate to motion in air or (for boats and ships) a 

fluid such as water where the resistance ofthe fluid has a major effect on the resulting 

motion. The problem of the resistance (or drag) of a fluid is a rather complicated one 

and can essentially only be found by experiment. In modelling motion it is necessary 

to assume, on the basis of experimental results, particular fonns for air or water 

resistance. Apart from these assumptions being reasonably consistent with experiment 

they have, in order to obtain reasonably simple results, to be such that the resulting 

mathematical problem is fairly simple (i.e. the integrations have to be easy). In real 

situations this latter assumption is not particularly necessary as numerical methods 

can be used when difficulties arise. Experimental evidence is available for falling 

bodies and for vehicles such as cars and aeroplanes. 
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Falling bodies 

Though the bodies are modelled as particles the air resistance assumed is that 

experienced by a fa1ling sphere. Experimental evidence has shown that for a moving 

sphere the fonn of resistance depends on the product du where d m denotes the 

diameter of the sphere and u ms -1 denotes its speed. The experimental results show 

that the resistance R in newtons is given by 

R = 1.66 X 10-4 du for du < 10-5 

R = 0.2 d 2 u 2 for 10 -2 < du < 1. 

It is not possible from the experimental evidence to infer that a power law is valid for 

10- 5 < du < 10-2 and a combination of the two expressions might be more 

appropriate. The main conclusion from the above is that the air resistance is only 

directly proportional to speed for extremely small particles and/or very low speeds. 

Assuming that resistance is proportional to the square of the speed appears to be a 

more valid assumption. The mathematics associated with resistance directly 

proportional to speed is however much simpler than that for other laws and this linear 

law is therefore often used as a first approximation. 

Moving vehicles 

Experiments show that for most purposes it may be assumed that the resistance on a 

moving vehicle can be written as~ pC AV2
, where p is the density of the 

2 D 

surrounding medium, V is the speed of the vehicle, A is the cross sectional area 

perpendicular to the fluid flow and CD is the drag coefficient and is experimentally 

detennined. In the 1920s the drag coefficient of a car was about 0.5, these days most 

drag coefficients for cars are lower than 0.4 with some being lower than 0.3. 

For a car there is an additional element of resistance, known as the rolling resistance, 

which is primarily due to friction at the tyres. For relatively low speeds this can often 

be assumed to be either constant or directly proportional to speed. 

Terminal speed 

If the total force acting on a particle of mass m is m f(v) then 
dv dt =f(v). 

In many cases of resisted motion the functionf has the following properties 

(i) there is one, and only one, positive value Vofv such thatj{v) = 0, 

(ii) for v > V, f < 0, 

(iii) for v < V, f > O. 

If at some time v u (> V) then v would be decreasing and would continue to do so 

until v V and as the derivative is then zero v would then stay constant. Similarly at 
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some time v w « V) then v would be increasing and would continue to do so until v 

= V and as the derivative is then zero v would then stay constant. Therefore in both 

instances the speed would tend to the constant value V. This value is known as the 

terminal (limiting) speed and is the speed when the total force acting is zero. 

2.4 Problems involving resisted motion 
Possibly one of the most important things to do when trying to solve problems 

involving resisted motion is, as stated in section 5.1 of Ml, to pick a reference 

direction and find the component of force in that direction. It also helps to have a 

sketch with all the forces acting marked on it. 

Sometimes in problems you may be told that the resistance is proportional to some 

power of the velocity but the constant of proportionality is not given. In such cases 

you will be given some other information, such as the terminal speed, which will 

determine the constant of proportionality. 

Example 2.7 

The resistive force acting on a particle of mass 0.2 kg and moving along a straight line 

is proportional to the speed of the particle and such that the particle experiences a 

resistance of 20 N when moving with speed 10 ms ~1. Find the time taken for the 

speed to drop from 10 ms ~l to 5 ms -J • 

The reference direction is taken in the direction of the initial velocity as shown in the 

diagram and the velocity of the particle at time t s after its speed is 10 ms -I is denoted 

by v ms~l. 

The resistance will be assumed to be kv N, where k is a constant. This is 

equal to 20 N when v = 10 so that k= 2. The equation of motion is therefore 

1.e. 

dv 
0.2 dt 2v, 

dv 
dt 

-lOv. 

This can be solved by separation of variables or, as mentioned above, by making the 

trial substitution v = ael1li , this gives 

maemt = -10ael11t, 

so that m = 10 and v = ae-Iot. Substituting v 

and v = lOe-10t. The speed is 5 ms~l when 

lOe- lOt = 5, 
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-lOt = In(±), 
t 

1nl 
10' 

A stone of mass m kg is thrown upwards with speed 2 ms -1. The air resistance, when 

the stone is moving with speed v ms -1 is; mvg newtons. Find, in terms of g, the time 

taken to reach the highest point. 

ref clirection 

The forces acting on the stone during the period that it is rising are shown in the 

diagram and the reference direction is taken upwards. The equation of motion is 
dv 1 

md[ = -mg 2 mvg, 

dv (1 J d[ = -gll+-v . 
\ 2 

or 

Separating the variables as in step (i) gIves 

and therefore 

1 dv 

( 
1 1 d[ = -g, 

l+-v I 
" 2 J 

f 
dv 

1 = -gJ dt. 
1 + 2'" 

At the point of greatest height the speed will be zero and therefore integrating the left­

hand side from v = 2 to v = 0 and the right-hand side from t = 0 to t = t gIves 

-2 In (2) 

so t = 
21n 2 

g 
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Example 2.9 

Find, for the problem of Example 4.8, (a) an expression for the height travelled in a 

time t s after projection, (b) the greatest height reached, (c) an expression for speed in 

terms of height. 

In order to find the displacement it is necessary to find v in terms of t, one way of 

doing this is to integrate the left- hand side of 

f 
dv 

1 =-gfdt. 
1 +21' 

from v 2 to v = v and the right hand side from t = 0 to t = t. 
Alternatively v can be found by solving 

dv (1 \ 
dt -gll+ZvJ 

as an equation with constant coefficients. Trying v = c, where c is a constant 

gIves c -2 so that a particular integral is -2. The homogeneous equation is 

dt = -}, 

making the trial substitution v = aemt gives m ~ so that the general solution 

IS 

:&!. 

v = -2 + ae 2 where a is a constant. 

Substituting v 2 for t 0 gives a 4 and 

dx 
v dt = -2 + 4e 

Integrating this equation from tOto t = t gives 
8 -gl 

x -2t- g(e 2 -1). 

The time to maximum height is, from the previous Example, or by setting v 0 in the 
. 2ln 2 

expressIOn for v, --. Substituting this value for the time in the expression for x 
g 

gives the maximum height as .! (1 - In 2). g 

It is not possible to invert the expression for x to express t in terms of x but it is 

'b . f' 2 I (v 1 '\[ db' . . h POSSl le to express t m terms 0 v to gIve t n - + an su stltutmg III t e 
g 4 2; 

expression for x gives 
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4 ln (~+~) 
g 4 2 

8 
g(v-2). 

In this problem writing the acceleration as v : leads to some algebra which is not 

directly covered in your course and the method cannot be used to find a relationship 

between v and x. 

Example 2.10 

A stone of mass m kg is thrown upwards with speed 2 ms -1. The air resistance, when 

the stone is moving with speed v ms -) is i mVlg newtons. Find, in terms of g, the 

maximum height reached. Find also the maximum speed attained on the downward 

path and the speed with which the stone returns to the initial point. 

ref direction 

The forces acting on the stone during the period that it is rising are shown i~ the 

diagram and the reference direction is taken upwards. The equation of motion is 

or 

dv 1 2 
mdt -mg 4 mv g, 

dv 
dt _ g(l + 1 v21' 

4 j 

In this problem, since the height is required, it seems more appropriate to write the 

I · dv h acce eratlOn as v dx so t at 

dv 
v-

dx 

Separating the variables and integrating with respect to x gives 

f v~v = g fdx. 
1 + v2 

4 

At the point of greatest height the speed will be zero and therefore integrating the left­

hand side from v 2 to v = 0 and the right-hand side from x 0 to x = x gives 
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I v~v 
21 + _v2 

4 

Carrying out the integration gives 

( 1 JV=O 
2ln II +_v

2 

4 v=2 

so x 

-gx 

-2ln (2) 

21n2 

g 

gx 

The downward motion has now to be investigated and the reference direction is now 

taken to be downwards from the point of maximum height. The forces acting on the 

stone are shown in the diagram. 

mg 

ref direction 

The equation of motion is 

or 

dv 
mv dx 

v~ g[l v: 
The right hand side vanishes for v 2 and therefore the maximum speed that could be 

attained on the downward path is 2 ms -I . 

Separating the variables and integrating the left-hand side from v = 0 to v w, where 

w ms -I denotes the maximum speed of the stone, and the right-hand side from x = 0 

to x g gIves 

Carrying out the integration gives 

glVlng 

( 1 
-2Inll- 4 

( 1 ) 
In ll- 4 w

2 

2ln 2. 

1 
In 2 so that I - 4W 2 

1 '2 and w 
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Exercises 2.3 

1 A particle of mass 0.5 moving with speed v ms -1 is resisted by a force 

of2v newtons. Find the time taken for its speed to reduce from 20 ms- I to 2 ms-I. 

2 A particle of mass 0.2 kg is projected with initial speed 6 ms along a rough 

horizontal table, the coefficient of friction being 0.5. The particle is also 

subject to air resistance which, when it is moving with speed v ms -1, is equal to 

0.1 v newtons. 

Find the time taken for the particle to come to rest. 

3 A particle subject to a resistance proportional to the square of its speed has its 

speed reduced from 8 ms -1 to 4 ms -I in 6 seconds. Find the distance it travels in 

that time. 

4 An aeroplane of mass 20 tonnes takes off under a constant thrust of 250 kN. The 

drag on the aeroplane when moving with speed v ms -I is 1 Ov 2 N. Its take off 

speed is 90 ms -I . Find the minimum length of runway. 

S A car of mass m moves under the action of a constant driving force F and a 

resistance, which when the car's speed is v, is mkv. Find the maximum speed that 

the car can attain and the time taken, from rest, before three quarters of this speed 

is attained. 

6 A parachutist jumps from a balloon. The air resistance is assumed to be 

proportional to the speed of the parachutist and his terminal speed is 5 ms -I . Find 

his speed after 0.5 s and the distance he has dropped in that time. 

7 If the resistance in the previous question is assumed to be proportional to the 

square of the speed, with the terminal velocity being unchanged, find the speed 

after the parachutist has been dropping for 1 s. 

8 A particle of mass 0.5 kg moves in a straight line under the action of a resistive 

force of magnitude 0.4(1 + v 2
) newtons when the speed of the particle is v ms-I. 

Show that it is reduced to rest from a speed of 4 ms -I time 1.25 tan -14 s. 

Miscellaneous Exercises 2 

1 The engine of a powerboat is shut off when its speed is 12 ms -I and the water 

drag is assumed to produce a retardation of 0.1 v 2 ms -2 when the boat is moving 

with speed v ms -\ . 

(a) Write down the differential equation governing the motion and find an 

expression for the time taken for the speed of the boat to drop to v ms -1. 

(b) Explain, by considering the time taken to come to rest, why the model of 

retardation chosen is not particularly realistic and suggest an alternative 
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fonnula for retardation which may be more suitable. is no need to 

carry out any calculations using your suggested retardation.) 

2 A particle P of mass 0.3 kg moves along a horizontal straight line. The particle is 

acted upon by a horizontal resistive force of magnitude 1.2vn+1 newtons (n > 0) 

where v ms ~1 is the speed of P at time t s. At time t = 0 the particle is at a point 0 

and moving with speed u ms ~1 • 

(a) (1) Obtain the differential equation relating ~~ and v. 

(ii) Solve this differential equation to find an expression for v in tenns 

ofu, t and n. 

(b) For the case n 3 

(i) obtain, in tenns of u and x, an expression for v at a point a distance x 

metres from 0, 

(H) detennine, in tenns of u and x, the rate at which work is being done 

against the resistance when P is x metres from O. 

3 The non-gravitational resistance to the motion of a car of mass 1000 kg moving 

with speed v ms ~1 is known to be of the fonn (kv + 0.05 k(2) N, where k is a 

constant. When the car's engine is working at a rate of 11.25 kW the car can 

move at a steady speed of 25 ms ~1 on a horizontal road. 

(a) Find the value of k. 

(b) Find the rate at which the car's engine works when the car is moving at a 

steady speed of 15 ms ~1 up a hill inclined at an angle sin -1 1 to the 
49 

horizontal. 

(c) When the car is moving with speed 25 ms -Ion a horizontal road the engine 

is switched off. Show that the speed v ms -1 of the car, after travelling a 

distance of x m after the engine has been switched off, satisfies the 

differential equation 
dv 

2500 dx = -20 - v. 

Solve this differential equation to find the distance travelled before the car's 

speed falls to 5 ms -I. 

4 A particle of mass 0.4 kg is projected vertically upwards with a speed of 30 ms ~I • 

Verify that the time taken to reach its greatest height is more than 3 s. 

In an experiment when the particle was projected as above it was found that the 

actual time to reach its greatest height was 2 s. Assuming that this difference in 

times is due to the existence of air resistance which is directly proportional to the 

speed of the particle show that the speed v ms -I of the particle at time t s after 

projection satisfies a differential equation of the fonn 
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9.8 kv, 

where k is a constant. Solve this differential equation to determine v in terms of k 

and t. VerifY that a value of 0.4 for k produces good agreement with observation. 

Use this value of k to find the air resistance when the particle is moving 

at a speed of 12 ms -1. 

5 In a particular model of the braking effect of a car the retardation of the car, when 

. . h d -1' 600 -2 F' d h' ak fi movmg WIt spee v ms ,IS v+ 175 ms . m t e tIme t en or a car to stop 

from a speed of25 ms -1 and the distance travelled in that time. 

6 A particle of mass 0.2 kg moves in a horizontal straight line under the action of a 

resistive force proportional to its speed. The force is 2 N when the car is moving 

with speed 10 ms -I. Given that the speed is v ms -I at time l seconds show that 
dv 
dt - v. 

Find (i) the time taken for the speed to decrease from 4 ms -I to 2 ms -I, 

(ii) the distance travelled during this period. 

7 A rocket of mass m is projected vertically upwards from a point on the earth's 

surface and it moves along a straight line which passes through the centre 0 of 

the earth. When the rocket reaches a distance b from 0 its fuel has been 

exhausted and its speed is u. It then continues under the action of the earth's 

gravity only. 

(a) Assuming that the gravitational force on the rocket has the constant value mg. 

(i) find the speed of the rocket when at a distance x (> b) from 0, 

(ii) describe the subsequent motion of the rocket. 

(b) Assuming that the gravitational force acting on the rocket when it is at a 

distance x( > b) from 0 is m: directed towards 0, where k is a constant, 
x 

(i) find the speed of the rocket when it is at a distance x( > b) from 0, 

(ii) describe the subsequent motion when u 2 < 2;, 

( ' 00) d 'b h b . h ) 2k III escn e t e su sequent motion w en u - > b . 

8 The maximum speed of a car is V and the resistance to its motion varies as the 

square of its speed. If its engine works at a constant maximum rate the car attains 

a speed of t V from rest in a distance a. If the engine exerts a constant 

maximum tractive force the car attains the speed t V from rest in a distance b. 
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9 A particle is projected vertically upwards in a medium in which at any instant the 

resistance to its motion is mk times the square of its speed at that instant. Deduce 

that the greatest height H achieved by the particle is related to its initial speed u 

by 

U 2 f (e 2kll -1) 

Find the corresponding relation between H and the speed U of the particle when 

it returns to its starting point. Hence show that 

U u e-kH 

10 A truck of mass 1000 kg starting from rest, runs down a slope of inclination 

sin -J ;9' It is subject to a frictional force of (1 OOv + 500) N, where v is its speed 

in metres per second. Show that the equation of motion ofthe truck is 
dv 1 v - -
dt 2 10' 

Deduce that the speed cannot exceed 5 ms -J . By solving this differential equation 

show that t s after its release from rest the truck is travelling at a speed of 

s( 1- e fa J ms -J . 

What is the distance travelled by the truck in time t s7 

Show that it will have travelled 5(1 Oln 10 - 9) m when its speed reaches 0.9 of its 

maximum speed. 

11 A body of mass 240 kg is dropped by parachute with negligible initial speed. 

Whilst the parachute is opening the body is subject at time t s to a resistance due 

to the atmosphere of 40v N where v ms -J is its speed at that time. Show that 

whilst the parachute is opening 

6 dv 6g- v. 
dt 

If the parachute is fully open after 6 s, prove that the speed of the body will then 

be 6g(1 - e -J ) ms -J • 

Find an expression for the distance fallen by the body in time t s (t :S; 6). 

Show that the body has fallen through a distance of 36ge -J whilst the parachute 

IS opemng. 
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A particle of mass m moves along the x-axis under the action of a force 

2mn 2a 2x 
in the x direction, where n and a are constants and x is the 

displacement of the particle from O. Show, or verify, that the speed v of the 

particle when its displacement from the origin is x is such that 

2n 2a 2 
. 

v2 - 2 2 IS constant. 
(a +x ) 

(a) The particle is projected from x = 2a with speed u in the negative x direction. 

Find 

(i) the least value of u so that the particle can escape to infinity, 

(ii) the value of x at the point where the particle first comes to instantaneous 
n 

rest for the case when u = . 

(b) The particle is projected from infinity so that at x = 0 its kinetic energy is 

3mn2 and it then receives an impulse so that its kinetic energy becomes 

3pmn2, where p is a constant. 

Find 

(i) the speed of projection, 

(ii) the range of values of p such that the subsequent motion is confined to a 

finite region of the x-axis. 
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Chapter 3 

Simple Harmonic Motion 

After working through this chapter you should 

• know what is meant by simple harmonic motion (S.H.M.).and be able to recognise 

problems on simple harmonic motion, 

• be able to solve kinematic and dynamic problems involving simple harmonic 

motion, 

• be able to refine the problems to take into account damping. 

3.1 Basic ideas 
Simple harmonic motion is a particular motion on a straight line and is possibly best 

understood by looking at a couple of examples. 

As the first example we consider a particle P moving on the x axis so that its 

displacement x metres from the origin at time t seconds is given by 

x = 2 sin t. 

The diagram shows the behaviour of x with t. 

x 

2 

o 0 n 
2" 

-2 

3rt 
2f 

I 

2n 

The velocity v ms -1 of the particle in the direction of increasing x is therefore given 

by 
dx 

2 cos t. 
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For t = 0 the particle is at the origin and has a velocity of 2 ms -1 in the positive x 

direction. Therefore P will start moving in the direction of increasing x. The 

maximum value of x occurs when sin t first reaches its maximum value of I and this 

occurs when t .::. The maximum value of x is therefore 2. Since t =.::, the velocity 
2 2 

of P is zero when x has its maximum value i.e. P is at its maximum distanee from the 

origin. As t continues to increase x starts decreasing and P reaches the origin when 

sin t 0 i.e. t n. At this instant v = 2 so that P is moving in the negative x 

direction with speed 2 ms -I . For t > n, sin t is negative and x continues to deerease 

until sin t reaches its minimum value of -1 and this occurs when t 3n. At this time 
2 

v = 0 so that P is instantaneously at rest. 
3n 

For t> v is positive so P moves in the positive x direction and reaches the origin 
2 

when sin t 0, i.e. t = 2n. At this time v = 2 so that P is moving with speed 2 ms -1 in 

the positive x direetion. This is exactly the same situation as that when t = 0 and 

therefore the motion is repeated in that, for example, in a further time of':: seconds P 
2 

is again at its maximum distance from the origin. The stages in the motion are 

therefore 

(i) P travels from the origin to the point A in the following diagram where x 2, 

where it comes to instantaneous rest, 

(ii) P travels from A to the origin, where v -2, 

(iii) P travels from the origin to the point B where x -2, where it comes to 

instantaneous rest, 

(iv) P travels from B to the origin, where v = 2. 

<If-- 2 _<If-- 2 _ 

B 0 A 

The cycle then repeats itself and the motion is therefore an oscillatory one, the total 

time taken for a complete cycle being 2n s, this is the period of the oscillation. The 

time taken for each of the above stages is':: s, i.e. a quarter of the period. 
2 

As the second example we consider a particle P moving on the x axis so that its 

displacement x metres from the origin at time t seconds is given by 

x 4 cos 3t. 

The following diagram shows the behaviour of x with t. 
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x 

O+-----~-----.=_----+_----~I------_+t 
21t 
"3 

-4 

The velocity v ms -I of the particle in the direction of increasing x is therefore given by 

D 

dx 
v = dt 

o 

12 sin 3t. 

For t = 0 the particle is at the point C where x 4 and is instantaneously at rest. As t 

increases cos 3t decreases therefore P will start moving in the direction of decreasing 

x and reaches the origin when cos 3t = O. This occurs when 3t n. h n I.e. w en t = -. 
2 6 

At this time v = -12 and P starts moving along the negative x axis and continues to 

move until cos 3t reaches its minimum value of -1. This occurs when 3t n, I.e. 

n (i.e. t has increased by a further n At this time v 0 so that P is 
3 6 

instantaneously at rest at the point D where x 4. For t > 2:, v is positive and so P 
3 

moves in the positive x direction and reaches the origin when cos 3t 0, i.e. 3t = 3n 
2 

and t = 11: (with t showing a further increase of 2:). At this time v 12 so that, at the 
2 6 

origin, P is moving with speed 12 ms -I in the positive x direction. It therefore starts 

moving along the positive x axis until cos 3t reaches its maximum value of 1; this 

occurs when t 2n (i.e. t has increased by a further n). At this time the particle is 
3 6 

again instantaneously at rest at C. This is exactly the same situation as that when t = 0 

and therefore the is repeated. The stages in the motion are therefore 

(i) P travels from the point C, where x 4, shown in the diagram to the origin, 

(ii) P travels from the origin to the point D where x = - 4, 

(iii) P travels from D to the origin, 

(iv) P continues from the origin back to the point C where v O. 
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The cycle then repeats itself and the motion is therefore an oscillatory one, the total 

time taken for a complete cycle being 2n s; this is the period of the oscillation. The 
3 

time taken for each ofthe above stages is 2: s, i.e. a quarter of the period. 
6 

Both the above are examples of simple harmonic motion (often abbreviated to 

S.H.M.) with centre 0 (this is the point midway between the extreme positions). The 

most general form of simple harmonic motion with centre 0 is defined by 

x = a sin (cot + s), 

where a, co and s are constants with a being positive. In the first example a 2, co = 1 
n 

and s= 0, whereas in the second example a = 4, co 3 and s = 
2 

The general form of x is ShO\x;l1 for s < n in the following diagram. 
2 

x 

1 

~~---+~I~------~--------------~-+t 
+---+- 2n --------l.....-------------4 

ID 

-a 

The velocity v in the positive x direction is given by 
dx 

v aco cos(cot+s) 
dt 

The motion is periodic, the period being 2n 
co 

If the time T for one oscillation is 211 
co 

then the number of oscillations per unit time is ~ 
T 

~, this is called the frequency of 
211 

the oscillation. In S.I. units the unit offrequency is the hertz (Hz) with one hertz being 

one oscillation (or cycle) per second. Since cot is an angle measured in radians the 

units of co in the S.I. system are rads -I. co is known as the circular frequency, this is 

not a particularly obvious term and its us~ stems from the fact that there is a 

relationship between S.H.M. and circular motion. This is discussed in section 4.5. 

The particle is furthest from 0 when sin (cot + s) = ± 1 and therefore x ± a, so that 

the maximum distance from the origin is a which is called the amplitUde of the 

motion. When sin(cot + s) = 1, cos(cot + s) 0, so the particle is instantaneously at 

rest at the extreme points. 
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The particle passes through the ongm when sin(rot + s) = 0 and at these times 

cos(rot + s) = ± 1 so that at the origin the speed has its maximum value of aro. 

You can see from the synnnetry of the sine function that the time to travel between a 

maximum point (i.e. an extreme point) and the origin is a quarter of the period .. 

Simple hamlonic motion of amplitude a and centre 0 is therefore a motion between 

the point A where x a and the point B where x = a. 

+-- a _+-- a_ 

B o 

A particle P moving to the right in the above diagram at a point in-between A and B, 

will come to instantaneous rest at A and then start moving to the left and continue to 

do so until it reaches B where it again comes to instantaneous rest before moving to 

the right to its initial position. 

A particle P moving to the left in the above diagram at a point in-between A and B, 

will come to instantaneous rest at B and then start moving to the right and continue to 

do so until it reaches A where it again comes to instantaneous rest before moving to 

the left to its initial position. 

It can be very useful in solving problems involving S.H.M. to use a simple diagram 

like the one above to visualise what is happening. For problems where the direction 

of motion of the particle has to be taken into account such a diagram is almost vital. 

Though the form x = a sin (0)t + s) is the easiest one from which to see the general 

behaviour of simple harmonic motion it is not the best form to use to try and 

detennine x given conditions at a specific value of t. In this case it is 

generally easier to use the general solution of the simple hannonic equation in the 

form x A cos 0)t + B sin C,)t. This form can also be obtained from expanding 

sin (0)t + s). 

If a particle is at the origin for t 0 then A = 0 so that x = B sin 0)t, the maximum 

magnitude of x is I B I and this by definition of the anlplitude is a, therefore 

B ± a and x = ± Cl sin 0)t. Differentiating this gives Qi: ± a0) cos 0)t so the plus 
dt 

sign corresponds to a particle moving to the right at the origin and the minus sign 

corresponds to a particle moving to the left at the origin. 

The form x = ± a sin 0)t therefore represents a motion when the particle is at the 

origin at time t = 0, the plus and minus signs corresponding to a particle moving in the 

direction of increasing x or in the direction of decreasing x, respectively, at the origin. 

If a particle is at one of the extreme points at t = 0 then it will be at rest and since 
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dx. . h - = - filA sm fill + filB cos filt this means t at B = O. Therefore A 
dt 

a if the particle 

is initially at x = a and A -a ifthe particle is initially at x-a. 

The form x = ± a sin filt therefore represents a motion when the particle is at one of 

the extreme points x = ±a at time t 0, the plus and minus signs corresponding, 

respectively, to the extreme positions x a and x -a. 

There are many examples in "real-life" where the motion is simple harmonic. 

Particular examples are the tip of the needle in a sewing machine, the motion of a cork 

pushed down gently in water, the motion of a particle made to oscillate at the end of a 

spring, the variation in the level of the tide in a harbour, the motion of a point on the 

blade of an electric jig saw. 

The motion of the weight at the end ofa clock pendulum and the up and down motion 

of the piston in the engine of a car are both approximately simple harmonic. 

Alternative definitions 

The above definition of S.H.M. is the one that shows most clearly the nature of the 

motion. There are alternative definitions that you may come across and you need to 

be able to recognise these. These alternatives can all be obtained from the above 

form. 

If x =a sin (fill + 8) then v=afil cos (fill + 8) =' and therefore 

v 1 = a 2 fil 2 cos 2 (filt + 8). 

Since cos 1 (filt + e) =] -sin 2 (fill + 8) the expression for v2 can be rewritten as 

v 2 = a 2 fil 2 (l - sin 2 (fill + 8)). 

and substituting for sin (filt + 8) in terms ofx gives 

v 1 = (fill a 2 Xl) 

This expression for v in terms of x is an alternative way of defining S.H.M. and in 

order to confirm this it is necessary to show that the general solution for x is of the 

form 

a sin (filt + 8). The easiest way of doing this is to write x as a sin 0 so that, using the 

chain rule, 

v 
dx 

dt 

de 
acos8-

dt 

Substituting for x and v in terms of 8 gives 

( dO) ldt fill, 

so that 
dO 

±fil 
dt 
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Integrating this gives 

e (i)t + constant, 

so that x will be of the form a ((i)t + E). 

An alternative method of obtaining x is to take the square root of the expression for v 2 

and integrate by separating the variables as in Example 2.4. 

Ifx a sin ((i)t + E), then 

and substituting for sin «(i)t +E) in terms of x glves 

This gives a further definition of S.H.M. i.e. that the motion of any particle whose 

displacement satisfies the above differential equation is simple harmonic. To confirm 

this it is necessary to show that the general solution of the above equation is of the 

form x = a sin «(i)t +£), This has already been shown at the end of Example 1.5 where 

n is used instead of (i). 

For x> 0 the acceleration is in the negative x direction i.e. towards the origin and for 

x < 0 the acceleration is in the positive x direction i.e. again towards the origin. 

Therefore very often the differential equation is stated in the alternative verbal 

form "the acceleration is always directed towards the centre and directly proportional 

to the distance from it". 

Since force is mass times acceleration this latter form can be restated as "simple 

harmonic motion is produced by a force acting towards the centre and directly 

proportional to the distance from it". 

The differential equation can also be obtained by differentiating v 2 =(i) 2 (a 2 _ x 2
) 

with respect to x and using the identity 

dv d2x 
vdx 

Equivalently using fue above identity in the differential equation and 

to x gives 

(i) x + constant, 

d .. h . h c: ?? 2 2 (2 2) an wrltmg t e constant m t e lorm (i) - a - gives v = (i) a - x . 

These results can be summarised as follows: 
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Summary of basic formulae 

If a particle describes S.H.M. along the x axis about the origin 0 with period 2n and 
00 

amplitude a then 

Period 
2n 
(I) 

Frequency 
00 

2n 

x = asin(oot +£), 

x A cos fiJt + B sin fiJt, 

(this form is the most useful one if conditions are given for t 0) 
v 2 =fiJ2(a 2 X2), 

d2x = - 00 2 x, 

where x and v denote the displacement and the velocity of the particle at time t. 

Each one of the last four equations defines simple harmonic motion and anyone of 

these equations can be obtained from any of the others. These are the fundamental 

formulae for S.H.M. and you should commit them to memory. Other basic results 

for motion with centre 0 are: 

Maximum speed is at the centre and equal to afiJ. 

Distance between extreme points 2a. 

Displacement of a particle at 0 for t 0 is ± a sin fiJt. 

Displacement of a particle at x ±a for t = 0 is ± cos fiJt. 

Centre not at the origin 

The centre of the motion need not be the origin but could, for example, be the 

point x = b. 

• .. -----x 
• • • o +-- b ----+ ...-- X ---4> P 

If X denotes the displacement of the particle from x b, then, by definition of S.H.M, 

X = a sin (fiJt +£) However, as you can see from the diagram x = X + b so that 

and the other results become 

x b+asin(oot+£) 

v2 = + fiJ 2 (a 1 (x - bY), 
d2x = fiJ (X-b). 
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Maximum speed is at the centre and equal to aG}o 

Distance between extreme points 2a. 

Displacement of a particle at the centre for t = 0 is b ± a sin wt. 

Displacement of a particle at x = ± a + b for t = 0 is b ± a cos G}t. 

3.2 Kinematic problems 
simplest problems are kinematic ones when you are given that the motion is 

simple harmonic and some information and you are required to find further 

information. 

In the following numerical examples it will be assumed that x m and b m denote, 

respectively, the displacements at time t s of a particle P and of the centre of the 

oscillation, from a fixed origin O. The amplitude of any simple harmonic motion will 

be denoted by a m and the circular frequency by G} rads -1 . 

The velocity at time t s of the particle is denoted by v ms -I. The quantities x, b, a, v, t 

and G} are therefore pure numbers satisfying the above fundamental relations. 

The basic unknowns are a and G} and the first step is to use the given information to 

find these. 

Example 3.1 

A particle describes S.H.M. with period 1t s and the distance between the extreme 

points of the motion is 4 m. Find the greatest speed of the particle and its speed when 

at a distance of I m from the centre of the oscillation. 

Since the period n s it follows that 2n = G} and therefore G} = 2. 
(J) 

The distance between the extreme points is twice the amplitude and therefore a = 2. 

The maximum speed aG} and is therefore 4 ms -1 • 

The speed when the distance of the particle from the centre is x m is found from the 
result v 2 = G} 2 (a 2 

- x2 
). Substituting the values in this gives the speed as 2J3 ms -1. 

Example 3.2 

A particle moving in simple harmonic motion makes 4 oscillations per second and the 

distance between the extreme points of the motion is 0.3 m. Find the greatest 

acceleration of the particle. 
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The period of each oscillation is ~ s and therefore 2 re 
4 ill 

1 
- so that (J) = 8 re . 
4 

The distance between the extreme points is twice the amplitude and therefore 

a = 0.15. 

The acceleration is -(J) 2 x. The maximum acceleration will therefore be when x is 

greatest, i.e. at the extreme points. Therefore the maximum acceleration is (J)2a and 

substituting the values found for (J) and a gives the maximum acceleration as 

9.6re2 ms -2. 

Example 3.3 

The displacement x m of a particle at time t s is given by x = 3 cos 2t + 4 sin 2t. Find 

the amplitude and period of the oscillation. 

The first step is to write the displacement in the fonn a sin ((J)t + E). This latter fonn 

can be expanded as a sin (J)t cos E + a cos (J)t sin E. 

The two fonns will be the same provided that (J) = 2, 3 = a sin E, 4 = a cos E. 

Squaring and adding these last two equations gives a 5 and therefore the amplitude 

is 5 m and the period re s. 

Example 3.4 

The greatest speed of a particle describing simple hannonic motion in a straight line is 

1 Oms -I and its speed when at a distance of 4 m from the centre of the oscillation is 

6ms -I . Find the period and amplitude of the oscillation. 

It follows from the fact that the maximum speed is 10 ms -1 that 

a(J) 10, 

also substituting v 6 and x = 4 into v 2 = (J) 2 (a 2 

36 = (J)2 a 2 

2) . 
X ,gIves 

c./16. 

Substituting a (J) = 10 into this equation gives (J) = 2 and therefore the period is 1t s. 

Since (J) 2 it follows from a(J) 10 that a = 5 and the amplitude is therefore 5 m. 

Example 3.5 

The speed of a particle describing simple hannonic motion in a straight line is 6 ms-I 

when at a distance of 1 ID from the centre of the oscillation and 2 111S -I when at a 

distance of 3 m from the centre of the oscillation. Find the period and amplitude of 

the oscillation. 
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Substituting v 6 and x = 1, into v 2 = (j) 2 (a 2 x 2
), gives 

36 = (j)2 (a 2 1), 

whilst substituting v 2 and x = 3, into v 2 = (j) 2 (a 2 

2 
4 = (j) (a 2 9). 

), gives 

These are simultaneous equations for a and (j) and dividing them to eliminate (j) gives 

9 
= (a

2 
-1) 

2 . 
(a - 9) 

Solving for a gives a J10 giving the amplitude as J10 m. Substituting a J10 in 

36 = (j) 2 (a 2 
- 1) shows that (j) = 2 and therefore the period is 1t S. 

Example 3.6 

A particle describes simple harmonic motion, centre 0, with period 4 s and amplitude 

5m. Given that the particle is at 0 at time t 0 find its displacement from 0 at any 

subsequent time t s. Find also the time taken for the particle to travel (i) from 0 

directly to the point C where OC 2.5 m, (ii) from C directly to the point D where 

CD 1.5 m. 

Since the period is 4 S, 21t 4 and therefore (j) ~. The displacement is obtained by 
ill 2 

substituting a = 5 and (j) = ~ in x a sin (j)t giving 
2 

. 1t 
X 5 sm - t. 

2 

In problems involving time from point to point it is often helpful to draw a simple 

sketch, as follows, marking in the points. 

The value of t to reach C is found by substituting x = 2.5 in the above expression and 

solving for t, i.e. 

25 5 · 1t . sm - t, 
2 

there are an infinite number of solutions but we only need the smallest since we only 
1t 1 1t 

require the time to go directly to C and therefore -t sin-1 and 
2 2 6 

1 
therefore t = -. 

3 

The quickest way of finding the time to travel directly from C to D is to find the time 

from 0 to D and subtract from it the time from 0 to C. The time from 0 to D is found 

by solving 5 
. 1t 

4 = sm - t 
2 
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11: 
for t. Therefore ~ .. ~ t sin ~1 0.8 ( 0.927). It is very important to remember that the 

2 

inverse sine has to be found in radians and this gives t to be approximately 0.59. 

Subtracting the time taken from 0 to C gives the time from C to D to be 

approximately 0.26 s. 

Example 3.7 

A particle describes simple harmonic motion, centre 0, with period 6 s and amplitude 

3m. Given that the particle is at rest at the point A on the positive x axis at time t = 0 

find its displacement from 0 at any subsequent time t s. Find also the time taken for 

the particle to travel directly to the point C where C is between 0 and A and OC 2m. 

S· h . d' 6 211: mce t e peno IS S,-
11: 

6 and therefore (j) = -. Since the particle is at rest at A 
3 ID 

for 

t= 0 then A is one of the extreme points of the motion. Therefore the displacement is 

obtained by substituting a = 3 and (j) ~ in x a cos (j) t giving 
3 

11: 
X 3 cos t. 

3 

The starting point and the point C are shown in the following sketch. 

.. 3m .. 
o· · ~ +--2m ~C 

The value of t to reach C is found by substituting x 2 in the above expression and 

solving for t, i.e. 
11: 

2 = 3 cos -to 
3 

the smallest value of t is given by ~t = cos -I ~,and therefore t = 0.8. 
3 3 

Example 3.8 

A particle describes simple harmonic motion, centre 0 of amplitude 3 m and passes 

through a point at a distance of 1.5 m from 0 on two successive occasions at 

2 seconds apart. Find the two possible periods of oscillation . 

... --3m--.. 3m--
A· ••• 

O"--t.s~C B 
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The sketch shows the point C at a distance of 1.5 m from the centre 0 and the extreme 

positions A and B of the particle. There are two ways in which the particle can travel 

twice through the point C in an interval of two seconds 

(i) it travels to the right from C to B and then back to C, 

(ii) it travels to the left from C to A and then back to C. 

(i) The time from 0 to C can be found by assuming that at t 0 the particle is at 0 so 

that its subsequent displacement x m from 0 is 3 sin wt. The particle will then pass 

through C when 

1.5 = 3 sin wt, 

the smallest solution of this is t = ~. The time from 0 to B is a quarter of the period 
6(0 

and therefore the time from C to B and back is 2 11: ~J = ~, this is given to be 
6(0 3(0 

2 seconds so the period, 211:, is 6 seconds. 
w 

(ii) The time from C to A and back is twice the sum of the times from C to 0 and from 

o to A. The latter time is a quarter of the period and so the total time is 

2( ~+~) = 411:. 
~2w 6w 3w 

This is given to be 2 seconds so the period, 211:, is 3 seconds. 
w 

Example 3.9 

The level of the tide in a certain port is assumed to vary simple harmonically with 

period 12.4 hours and the difference in level between high and low water is 6 m. On a 

particular day low water occurs at noon. Find thc time when the water level will be 

increasing at its maximum rate and find this rate in ms 

The period is 3600 x 12.4 s and therefore w = 2n 
3600x 12.4 

The amplitude of the oscillation is 3 m, the maximum value of the rate of change 

occurs at the centre of the oscillation and this occurs a quarter of a period after low 

water i.e. at time 3.1 hours after noon. 
611: 

The maximum speed is aw = = 4.2 x 1 0 ~4 ms -I . 

3600 x 12A 
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Example 3.10 

A horizontal shelf oscillates vertically with amplitude 0.2 m. Find the least period of 

oscillations so that a particle placed on the shelf is not jerked off. 

t RN 

• 
t 9.8mN 

The diagram shows the particle on the shelf and the central position of the shelf. The 

displacement of the particle above the central position is denoted by x m. If the mass 

of the particle is m kg then the upward force on the particle is (R - 9.8m) N, where the 

reaction ofthe shelfis R N. Newton's law gives 

d2x 
m - R-9.8m. 

dt 2 

Since the motion is simple harmonic 
d2x co 2 x, 

so that R = m (9.8 Ul
2 x). The maximum value of x is 0.2 and therefore the 

reaction will be positive, i.e. the particle will not leave the shelf provided that 

9.8 ;::: 0.2Ul
2 i.e. Ul :::;; 7 and therefore the least period is 2n s. 

7 

Example 3.11 

A horizontal shelf oscillates horizontally with frequency 5 Hz. Find the maximum 

amplitude so that a particle placed on the shelf does not slide. The coefficient of 

friction between the shelf and the particle is 0.4. 

;5+- x ---+~ 9.8m 

The diagram shows the particle on the shelf and the central position of the particle is 

denoted by 0 and the displacement of the particle from the central position is denoted 

by x m. The only horizontal force acting on the particle is the friction force F Nand 

if the mass of the particle is m kg then Newton's law gives 

d2x 
m- F. 

dt2 
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The reaction R of the shelf is 9.8m N and therefore the maximum magnitude of F 

without slipping is OAR = 3.92m N. Therefore the particle will not slip provided that 

h . d f d 2 X . h 92 -? t e magmtu e 0 -2 IS not greater t an 3. ms -. 
dt 

Since the motion is simple harmonic 

0} 

where 
211: 

5 so that (J) 

0} 2 X, 

10;rr. The maximum value of d 
2 

X is therefore 

10011: 2 a ms -2 where a m denotes the amplitude of the oscillation. Therefore the 

Particle will not slip provided that a 3.92, = 3.97 x 10-3
• 

10011:-

Example 3.12 

Find the amplitude, period and centre of the simple harmonic motion defined by 

v 2 84 4x 2 + 16x . 

The general form of the speed for simple harmonic motion is v 2 
(J) 2 (a 2 (x - b) 2), 

and therefore the first step is to complete the square for the terms involving x and x 2 

l.e. 4x 2 + 16x. This expression can be rewritten as 4(x 2)2 + 16, so that 

v 2 
= 100 4(x 2)2 4(25 - (x 2)2). 

Therefore (J) = 2, a 2 = 25 and b 2 so that the motion is of period 11: s, amplitude 5 m 

with centre at the point x = 2 m. 

Example 3.13 

The velocity of a particle describing simple harmonic motion is 4 ms -I at the origin 

and ms -I and 1 ms -I when x I m and x = 3 m respectively. Find the centre of 

the motion. 

Since the question asks for the centre of thc motion it is very unlikely that this will be 

the origin and therefore the form v 2 = 0} 2 (a 2 - (x b) 2 ) has to be used. 

Substituting the given data in this expression gives 

16 0}2(a 2 _b2
), 13 o/~2-(1-bY), 1=0}2(a 1 (3 bY). 

Subtracting the second equation from the first and the third equation from the first 

3 ol (1 2b). 15 = 0}2 (9 - 6b). 

Dividing these equations to eliminate (J) gives b -1, i.e. the centre is at the point 

w here x = -1 m. 
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Exercises 3.1 

Questions I to 6 to a particle P describing simple harmonic motion with centre 

0; the extreme points of the motion are denoted by A and B. 

1 The magnitude of the acceleration is 8 ms -2 when OP = 2 m. Find the period. 

2 The period and greatest speed are !: s and 5 ms -1. Find the amplitude of the 
5 

motion and the length of OP when the speed is 4 ms -I . 

3 The greatest acceleration of Pis 20 ms -2 and it makes 10 oscillations per second. 

Find its greatest speed. 

4 The frequency of the oscillations is 3 Hz and the greatest speed is 10 ms -J. Find 

the amplitude. 

S The speed of Pis 6 ms-J when OP = 4 m and 8 ms- I when OP 3 m. Find the 

amplitude and period of the oscillations. 

6 The speed of Pis 16 ms -J when OP = 3 m and 12 ms -1 when OP 4 m. Find the 

amplitude of the oscillations and the greatest speed of P. 

7 The speed of Pis 12 ms -I when BP = 2 m and 3 ms -I when BP 1 m. Find the 

amplitude of the motion. 

8 The displacement x m of a particle at time t s is given by x 4 cos 3t - 2 sin 3t. 

Find the amplitude and period of the oscillation. 

9 The tip of the needle of a sewing machine travels a distance of 0.025 m from the 

top to the bottom of its stroke and its maximum speed is 5 ms -I. Assuming the 

motion is simple harmonic, find its frequency. 

10 The blade of a particular jig saw operates at between 1200 and 3000 strokes per 

minute (a stroke being one movement from top to bottom). The length of the 

stroke is 0.02 m. Find the range of maximum speeds for the blade. 

11 A particle describes simple harmonic motion, centre 0, of period 4 s and of 

amplitude 3m. Find the time taken for the particle to travel from 0 directly to the 

point C where OC 1 m and the time taken to travel a further distance of 0.5 m 

from C. 

12 A particle describing simple harmonic motion of amplitude 3 m passes through a 

point C at intervals of 5n sand 7n s. Find the distance of C from the centre of 
3 3 

the motion. 

13 The speed of a particle is 0.4 ms -I at the point A at a distance of 0.06 m from the 

centre of the oscillation and 0.3 ms -I at the point B, on the same side of 0 as A 

with OB 0.08 m. Find the time taken to travel from A to B. 
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14 The depth of water in a harbour varies simple harmonically about a mean position. 

On a certain day the depth at high water at 5 a.m. is 10 m and 6 hours 15 minutes 

later the depth at low water is 5 m. Find the first time after 5 a.m. when the depth 

of the water is 9 m. 

15 On a particular day in a harbour low tide occurs at 10 a.m. and high tide 

at 4.15 p.m. The depth of the water is 2 m at low water and 5 m at high tide. 

Assuming that the variation of the water level is simple harmonic find the times 

between 10 a.m. and 10 p.m. when the depth of the water is greater than 3 m. 

16 A body floating in the sea oscillates up and down with the waves with simple 

harmonic motion. It moves a total vertical distance of 0.4 m and its period is 6 s. 

Find its greatest speed and greatest acceleration. 

17 A horizontal shelf describes vertical oscillations in simple harmonic motion with 

period 5 s and amplitude 0.5 m. Find the maximum and minimum values of the 

reaction of the shelf on a particle of mass 0.4 kg resting-on it. 

18 A horizontal shelf describes vertical oscillations in simple harmonic motion and 

makes 2 oscillations per second. The amplitude of the oscillations is 0.1 m. Find 

the height of the shelf above its central position when a small particle on the shelf 

loses contact with it. 

19 A horizontal membrane oscillates vertically in simple harmonic motion with 

amplitude 0.2 cm. Find the frequency of the oscillation if sand sprinkled on the 

membrane just loses contact with it. 

20 A horizontal platform oscillates horizontally in simple harmonic motion of period 

1t s and amplitude 0.02 m. Given that the coefficient of friction between the 
5 

platform and a particle resting on it is 0.25 find whether the particle can stay on 

the platform without sliding. 

21 A horizontal platform oscillates horizontally in simple harmonic motion and 

makes five complete oscillations per second. The coefficient of friction between 

the platform and a particle resting on it is 0.1. Find the maximum amplitude of 

the oscillations so that the particle does not slip on the platform. 

22 The speed v ms -I of a particle whose displacement is x m is given by 

v 2 15 - 5x 2 + 10x. Find the amplitude, period and centre ofthe oscillation. 
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3.3 Dynamical problems 
So far it has been given that a motion is simple harmonic but in many real problems 

the first step is to establish that the motion is simple harmonic. Once this has been 

done the problems effectively become examples of those in the previous section. 

The basic method for establishing S.H.M., as for all dynamical problems, is to 

pick a reference direction and work out the forces in that direction and then 

set mass x acceleration force. 

If the motion is simple harmonic then you will end up with one of the equations 

d 2x 2 
= - co x de ' 

d2x 
-= - co 2 (x b). 
dt 2 

The second equation corresponds to the centre being at x b. 

If in an examination paper you see one of the above equations you know that you 

have a problem on S.H.M. Most problems on particles moving at the end of elastic 

springs and strings involve simple harmonic motion and if you come across such a 

problem then, once again, you know that you are extremely likely to be dealing with 

simple harmonic motion. 

You have already come across problems involving elastic springs and strings where 

you used energy conservation. This gave that the speed v was given by an expression 

of the form v 2 = px 2 + qx+ r, which is effectively of the form co 2 (a 2 (x b) 2 ) as 

was shown in Example 3.12. This is the general form for S.H.M. centre x b, so you 

could compare coefficients to find a, b and co. If an you have to find are speeds and 

displacements then the energy method is an equivalent alternative but, if you need 

times from point to point, then you need to use expressions of the form 
x asin(cot+£) or x Acoscot+Bsincot. 

There is a very important difference between strings and springs which you have to be 

very careful about. Springs exert forces when both extended and compressed, 

whereas strings only exert forces when extended. As you will see in the following 

examples the effect of this is that a particle at the end of an elastic only 

describes simple harmonic motion when the string is extended. 
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+-0.6 m---+ 

r (fUDDIUmmRS'­
'A B 

The diagram shows a spring of natural length 0.6 m and modulus 0.48 N on a smooth 

horizontal table. One end of the spring is fixed to a point A on the table and the spring 

initially lies at rest, and oflength 0.6 m, with its free end at the point B of the table. A 

particle P of mass 0.2 kg is then attached to the free end and at time t = 0 the spring is 

extended a distance of 0.06 m and released from rest. Show that at a subsequent time 

t s the displacement x m of P from B, in the sense from A to B, satisfies the 

differential equation 

d 2x 

dt 2 
-4x. 

Write down an expression for x at time t s and find the time that elapses until 

(i) the extension of the spring is first 0.02 m, 

(ii) the distance of P from 0 is 0.58 m. 

1+-0.6 m---+I~ 
tuOOODoomRJ'-e ~ 0.8x N 
A B P 

The reference direction is given to be in the sense from A to B and therefore when the 
.. h .. h . . f . d 0.48x d extenslOn IS x m t e tenslOn III t e spnng IS 0 magrntu e N = 0.8x N an acts 

0.6 

from B to A and therefore the force in the positive x direction is - 0.8 x N. 

If x is negative then the spring is compressed a distance of x m and it exerts a force 

. h . . d' . f 0.48x N 0 8 N h C: h C: • h .. III t e pOSItIve x lrectlOn 0 - -- = - . x , t erelore t e lorce In t e pOSItIve 
0.6 

x direction is - 0.8x N. In practice you would not normally be expected to analyse the 

force as carefully as this and, unless told to the contrary, it is safe to assume that when 

the displacement of a particle, at the end of a spring, in a given sense is x then the 

force in the same sense is A.x. In this expression Iv denotes the modulus and I the 
I 

natural length. 

Applying Newton's law gives 

i.e. 

0.2 d
2
x 

dt 2 
- 0.8x, 
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This equation immediately tells you that the motion is simple hannonic with centre B 

and with co 2. The particle is released from a point of rest i.e. from an extreme 

point so the amplitude is the initial distance of P from 0 i.e. 0.06 m and since x 0.06 

at t = 0 the subsequent displacement from 0 is given by x = 0.06 cos 2t. 

(i) Therefore x = 0.02 when 

0.02 = 0.06 cos 2t, 

and this first occurs when 2t = cos -I ~ so that t = 0.62. 
3 

(ii) In this case x 0.02 t satisfies 

0.02 0.06 cos 2t, 

so that 1 -I ( 1 t = 2 cos - = 0.96. 

Example 3.15 

Answer parts (i) and (ii) of the previous example when the particle P is projected at 

time t=0 from B with a speed of 0.08 ms-I in the sense from A to B. 

The only difference in this case is that the particle is at the centre at time t 0 so that 

the displacement is given by x = ± a sin 2t. Since the velocity is in the direction of x 

increasing the positive sign has to be chosen. The maximum speed occurs at the 

centre i.e. at B and is aco=2a so that a 0.04. Therefore x = 0.04 sin 2t and the 

extension of the spring is 0.02 m when 

0.02 0.04 sin 2t, 

and this first occurs when 2t sin -I ~so that t = n . 
2 12 

Similarly for x 0.02 

-0.02 0.04 sin 2t, 

and this first occurs when 2t sin -I 
1 7n 

so that t = 
12 

Example 3.16 

Answer parts (i) and (ii) of Example 3.14 when the spring is replaced by a string of 

the same modulus and natural length. 

In this case the main difference is in the equation of motion which only holds for x 

positive. For x negative the string is slack and P moves with zero acceleration i.e. at 

constant speed. 

The time to reach the extension of 0.02 is still the same. 
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However after P has passed through B it will move with a constant speed, this is the 

speed at B i.e. aco= 0.12 ms- I so that x = - 0.02 at a time 0.02 s = 0.17 s after 
0.12 

passing through B. 

The time taken to reach B is a quarter of the period i.e. ~ 
2co 

Therefore t = 0.17 + 0.79 = 0.96. 

Example 3.17 
--0.8m---+ 

r ooocU'OOOOO" 
'A B 

11: 
-s 
4 

0.79 s. 

The diagram shows a spring of natural length 0.8 m and modulus 6 N on a smooth 

horizontal table. One end of the spring is fixed to a point A on the table and a particle 

P of mass 0.3 kg is attached to the free end. The particle is set in motion and at time t 

= 0 the extension of the spring is 0.1 m and the particle is moving with speed 0.3 

ms -I towards the point A. Find the extension of the spring at time t s and also the 

amplitude of the oscillations. 

Since the extension is required as a function of time then the most appropriate method 

of solution is to find the equation of motion. 

The equilibrium position is taken to be at the point B and when the extension is x m 

(with x> 0) the tension in the spring is of magnitude ~ N = 7.5x N and acts in the 
0.8 

sense from B to A and therefore the force in the positive x direction is - 7 .5x N. 

1--0.8 m---+I~ 
t OOOOlSooo® '-it ~ 7.sx N 
A B P 

This will also be the force in the positive x direction for x negative and therefore 

applying Newton's law gives 

0.3 
d2x = 

2 
-7.5x, 

dt 

d2x 
-= -25x. 
dt 2 

l.e. 

This equation immediately tells you that the motion is simple harmonic about B with 

co = 5. 
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In this case, since conditions are not given at time t = 0 at either the centre or an 

extreme point, the general solution x = A cos 5t + B sin 5t has to be used. For t = 0, 
dx 

x 0.1 and -0.3 (the particle is moving towards A). Therefore A 0.1 and 
dt 

5B = -0.3 so that B = 0.06 so that 

x 0.1 cos 5t 0.06 sin 5t. 

To find the amplitude this expression has to be written in the form 
x = asin(St + E) = a sinStcos E + a cosS! sinE. 

Therefore -0.06 

a 

a cos E and 0.1 a sin E. Squaring and adding these gives 

.[r;062 + 0.12 = 0.12, 

so that the amplitude is 0.12 m. 

It is worth looking also at the alternative method using energy conservation. 
2 

Wh h .. hI' . h . . 1 6x J 3 7 - 2 J en t e extenslOn IS x m tee ashc energy m t e spnng IS - X -- = .)x , 
2 0.8 

and therefore, if v ms -1 denotes the speed of the particle, energy conservation gives 

~ x 0.3v 2 + 3.7Sx 2 = constant. 
2 

The constant can be found from substituting the initial values of x and v so that 

0.15v 2 +3.7SX2 0.15xO.3 2 +3.75x0.1 2
, 

this equation can be rearranged into the standard form for S.H. M. as 

v 2 = _2Sx2 +0.3 2 +2SxO.1 2
, 

or v 2 = 2S[0.3
2 

+2S2X50.12 _X2) 2S(0.06 2 +0.1 2 x2). 

Therefore the motion is simple harmonic with ill S and amplitude ~ 0.062 + 0.1 2 
. 

Once you have shown the motion is simple harmonic and found ill you can quote the 

general solution and solve the problem as above. The differential equation for x can be 

c: db d'f"" .. th . C 2 • h d' dv d
2 

x loun y 1 lerentIatmg e expresslOn lor v WIt respect to x an usmg V7"dx = -2' 
dt 

Example 3.18 

A particle P of mass 0.1 kg is attached to one end of an elastic spring, the other end A 

of which is held fixed and the particle can move in a vertical line through A. The 

spring is of natural length 1 m and modulus 4.9 N. Find the depth below A of the 

point B \\I'here the particle can rest in equilibrium. The spring is then further extended 

until P is a distance of 0.1 m below B and then released from rest. Show that the 

motion is simple harmonic with centre B and find the time taken until P first reaches 

B. 

63 



Simple Harmonic Motion 

A-......----.....---

(a) (b) 

Diagram (a) shows the equilibrium position with the equilibrium extension being 

denoted by d m. The forces acting on the particle are 0.1 x 9.8 N downwards and the 

tension 4.9d N acting upward. For equilibrium these are equal i.e. 0.98 = 4.9d so that 

d = 0.2 and therefore the point B is at a depth of l.2 m below A. 

It is required to show that the motion is simple harmonic with centre B and therefore 

its seems reasonable to use the downward displacement x m of P from B as a variable, 

as shown in diagram (b). The force in the downward direction due to the tension in 

the string is therefore -4.9(0.2 + x) N, the force in this direction due to gravity 

is 0.98 N so that the total force in the direction of increasing x IS 

- 4.9(0.2 + x) N + 0.98 N = - 4.9x N. 

Applying Newton's law gives, that at time t s, 

d2x 
0.1 -2 = - 4.9x, 

or 

dt 

d2x 
-= -49x 
dt 2 

' 

the motion is therefore simple harmonic with 0) 2 = 49 and the centre of the 

oscillation is at B. The time for P to first reach B is a quarter of a period i.e. ~s. 
14 

For any motion at the end of a spring it turns out that the motion is always simple 

harmonic about the equilibrium position and it therefore pays (it avoids algebra) to 

measure the displacement from this point 

Example 3.19 

An elastic string of natural length 0.5 m, one end of which is fixed at a point A, is 

extended a distance of 0.1 m by a particle P hanging freely from its other end. The 

particle is then pulled down a further distance of d m and released from rest. Find the 

time taken by the particle to reach its maximum height when 

(a) d= 0.05, (b) d= 0.15. 
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This question is fairly similar to the previous one except that neither the mass of the 

particle nor the modulus of the string are given, these are denoted by m kg and A N 

respectively. In equilibrium the forces acting on the particle are 9.8 m N downwards 

and the tension O.lA N = 0.2)" N acting upward. For equilibrium these are equal 
0.5 

i.e. A = 49m. 

As stated above it is a good idea to measure displacement from the equilibrium 

position and x m denotes the downward displacement of P from the equilibrium point 

B as shown in the diagram. 
A 

O.5m 

1 
B 

l 0.1 m 
t 
xm 

+ p 

The force in the downward direction due to the tension III the string IS 

-),,(O.l+x) 
therefore N = -2A(0.1 + x) the force in this direction due to gravity 

0.5 

is 9.8m N so that the total force in the direction of increasing x is 

- 2A(0.1 + x) N + 9.8m N - 2Ax N , since A 49m. Applying Newton's law gives, 

that at time t s, 

or 

98x. 

The motion appears to be simple harmonic with 0/ 98 and the centre of the 

oscillation is at B. There is a slight problem in that the equation of motion has been 

obtained assuming that the string is never slack and the possibility of being slack has 

to he considered. 

Case (a) For simple harmonic motion with the particle released from a point 0.05 m 

below the centre the maximum height above B would be at the other extreme point i.e. 

at a height of 0.05 m above B. At this point the string is not yet slack and therefore 
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the equation of S.H.M. is still valid and the time to the point of maximum height is 

If 
.. 1t 

ha a penod l.e. . 

Case (b) Assuming simple hannonic motion gives the maximum height above B to be 

0.15 m, however the string would have become slack at a height of 0.1 m above B 

and therefore the equations of S.H.M. no longer hold. In this case once the particle 

has reached the point where the string is no longer taut (i.e at a height of 0.1 m above 

B) the particle moves under the action of gravity alone. Therefore to find the time that 

it is in motion it is necessary to find the velocity when x = -0.1 ill. Up to reaching 

this point the motion will have been simple hannonic with amplitude 0.15 m 

so that, at time t s, x 0.15 cosJ98 t, where t = 0 is the time of release and 

v 2 98 (0.15 2
- x 2

). Substituting x = -0.1 gives the speed with which the particle 

starts moving under gravity alone as 1.11 ms -I and the time to reach the highest point 
. 1.11 . . 
IS - S = 0.11 s. The tIme taken to reach the pomt x -0.1 is found by solving 

9.8 

0.1 = 0.15 cosJ98 t, 

the solution is t = 0.23. The total time taken from rest to reach the highest point is 

(0.11 + 0.23) s 0.34 s. 

Example 3.20 

P 

A ~~IIAHlQDiQ"ORQUQNQQQgg~J B 

The diagram shows a particle P of mass 0.2 kg lying on a smooth horizontal table and 

attached by two springs of natural lengths 0.6 m and 0.4 m and moduli 3 N and 6 N 

respectively, to points A and B where AB = 1.4 m. Find the distance from A of the 

point C where the particle is in equilibrium. Show that if the particle is disturbed 

from C then it will describe simple harmonic motion about C and find the period of 

this motion. 

P 

A ~jlggQggg~~UJlQQQPOOOQQIlUJ B 

I 

(a) C 

The equilibrium position is shown in diagram (a) above, and the distance AC is 

denoted by d m. The extension of the spring attached to A is (d - 0.6) m and the 
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extension of the other spring (1 cl) m. The tensions in the springs are therefore 
3(d - 0.6) Nand 6(1 d) N. 

0.6 0.4 
3(d - 0.6) 

In equilibrium these are equal, i.e. 
0.6 

6(1-d) .. d 
glVlng = 0.9. 

0.4 

When the particle is set in motion its subsequent displacement from C in the sense 

from A to B is denoted by x m as shown in diagram (b). The extension of the spring 

attached to A is (d + x - 0.6) m and therefore the force acting on P due to this spring 

. 3(d+x-0.6)N· h .. d" h . fth' hd IS - m t e posItIve x lrectlOn. T e extensIOn 0 e spnng attac e 
0.6 

to B is (1 - d - x) m and therefore the force acting on P due to this string is 
6(1- d - x) N' h . . d' . h 1 r. . h . . ... m t e posItIve x lrectIOn. T e tota l.orce m t e posItive x duectIOn IS 

0.4 

therefore 
_3(d+x 0.6)N+ 6(1 d-x)N 

0.6 0.4' 

and on using the value for d, this simplifies to - 20xN. Newton's law gives 

l.e 

d2x 
0.2 -2 = - 20x, 

dt 

-lOOx. 

Th .. hr.' 1 h ., h . d 2n 1t e motIon IS t erel.ore sImp e annomc WIt peno - s = -So 
10 5 

Exercises 3.2 

In questions 1 to 3 a spring of modulus A N, natural length a m is placed on a smooth 

horizontal plane. One end of the spring is fixed at a point A, a particle P of mass m kg 

is attached to the other end and the particle is free to move in the line ofthe spring. 

1 m 0.1, A= 10, aI, the spring is extended a distance of 0.2 m and P released 

from rest. Find the time taken 

(a) until the extension is first equal to 0.05 m, 

(b) until AP is first equal to 0.97 m. 

2 m = 0.8, A 2.56, a = 0.8, at time t = 0 the particle is projected from its 

equilibrium position with speed 0.8 ms ~I directly towards A. Find expressions 

for the displacement and velocity of the particle at a subsequent time t s. 

3 m 1.5, A 27, a = 2, the particle is projected from its equilibrium position in the 

sense directly away from A with speed. 1.2 ms -I. Find the time that elapses 

before AP 1.9 m. 

4 Answer question 1 when the spring is replaced by a string of the same modulus 

and natural length. 
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5 Answer question 3 when the spring is replaced by a string of the same modulus 

and natural length. 

In questions 6 and 7 a particle P of mass m kg is suspended from one end of a spring 

of modulus AN, natural length a m, the other end of the spring being fixed at A. The 

particle is free to move along the vertical through A. 

6 m = 0.5, A = 16, a = 0.5, the particle is initially at rest in the equilibrium position 

and then pulled down a further distance of 0.04 m and released from rest. Find 

the time taken for the particle to 

(a) first return to the equilibrium position, 

(b) to first attain a height of 0.01 m above the equilibrium position. 

7 m = 1.5, A = 30, a = 0.8, the particle is initially at rest at its equilibrium position 

and it is then projected vertically downwards with a speed of 1 ms -1. Find the 

maximum depth of the particle below its equilibrium position and the time taken 

to drop a distance of 0.05m from the equilibrium position. 

8 A particle P of mass 0.1 kg is attached to one end of an elastic string, the other 

end A of which is held fixed and the particle can move in a vertical line through 

A. The string is of natural length 1 m and modulus 4.9 N. The particle is initially 

at rest when it is pulled down a distance of 0.4 m below its equilibrium position 

and released. Find the time taken between the string becoming slack and the 

particle reaching its highest point. 

9 A particle P of mass 0.1 kg is suspended in equilibrium from a spring and the 

extension of the spring is 0.1 m. When P is in equilibrium an additional mass of 

0.2 kg is gently attached to it and the combined particle released. Find the period 

and amplitude of the subsequent simple harmonic motion. 

10 One end of a spring is held fixed and two particles of mass 0.4 kg and m kg are 

attached together to the other end and hang in equilibrium. When they are 

displaced a small distance below the equilibrium point and released they make 

simple harmonic oscillations of period 0.5 s. If the particle of mass 0.4 kg is 

removed the other particle, when displaced from its equilibrium position, makes 

simple harmonic oscillations of period 0.25 s. Find m. 

11 Two points A and B lie on a horizontal line at a distance of 3 m apart. A particle 

P, in the region between A and B, of mass 0.6 kg is attached by one of two 

identical strings of modulus 20 N and natural length 1 m to A and to B. The 

particle is displaced a distance of 0.1 m from its equilibrium position along the 

line AB and released from rest. Show that its subsequent motion is simple 

harmonic and find its period. 

12 A particle lying on a smooth horizontal table is attached by a spring of natural 

length 0.6 m to a fixed point on the table. The spring is held at the point A where 
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the extension of the string is 0.1 m and then released from rest. It first returns to 

A after 1t s. Find the speed of the particle when it is at a distance of 0.02 m from 
2 

A and the time taken to reach this point. 

13 When a particle of mass 5 kg is suspended from a spring the extension is 0.2 m. 

Find the maximum speed of the particle when it is pulled down a further distance 

of 0.2 m and released from rest. 

3.4 Damped harmonic motion 
In the problems in the previous section it was shown that a particle moving at the end 

of a spring would describe simple harmonic motion, which is a periodic motion which 

can go on indefinitely. Such a motion of course cannot exist in reality and, if you 

observed the motion of a particle at the end of a spring, you would see that the 

oscillations gradually die down. This is due to the effect of air or frictional resistance 

and the simple model has to be refined to take this resistance into account. 

There are, as discussed in section 2.3, many possible models of resistance but the only 

one which leads to reasonably easy mathematics when refining problems involving 

springs is that which assumes that the resistance is directly proportional to the speed. 

Apart from resistance ocurring naturally there are many instances where damping is 

introduced to avoid oscillations continuing. For example a simple model of the 

suspension of a car would be a particle on top of a spring and therefore in this model 

the car would move up and down and be uncomfortable to drive in. In order to avoid 

this a damping system is introduced, this consists of a system of dashpots and these 

are constructed so that they exert a resistance proportional to speed. A dashpot is 

effectively a cylinder containing fluid with a closely fitting piston, which may have a 

small hole in it, when the piston is moved then the fluid seeps through the edges and 

through the hole and the resistance to the motion is approximately proportional to the 

speed of the piston. In modelling oscillations of a vibrating mass the mass is assumed 

to be connected to the dashpot as shown in the diagram. 

dashpot 

The shock absorbers of a car are effectively dashpots. 
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Therefore the model assuming resistance proportional to speed is a particularly useful 

one because it is a reasonable model of many systems where damping has to be 

introduced for practical reasons. 

Example 3.21 

+-O.6m---+ 

~ 0000000000" 
'A B 

The diagram shows a spring of natural length 0.6 m and modulus 0.48 N on a smooth 

horizontal table. One end of the spring is fixed to a point A on the table and the spring 

initially lies at rest, and oflength 0.6 m, with its free end at the point B of the table. A 

particle P of mass 0.2 kg is then attached to the free end and at time t = 0 the spring is 

extended a distance of 0.06 m and released from rest. There is a resistance to the 

motion of magnitude O.4v N when the particle is moving with speed v ms -]. Show 

that at a subsequent time t s the displacement x m of P from B, in the sense from A to 

B, satisfies the differential equation 

d2x dx 
- +2-+4x= o. 
dt 2 dt 

Obtain an expression for x at time t s and discuss the subsequent motion. 

(This is example 3.14 with an additional resistance term included.) 

The reference direction is given to be in the sense from A to B and therefore when the 

displacement from B is x m it follows as in the previous examples that the force in the 
. . d. . . 0.48x 

posItIve x lrectlOn IS - -- = - 0.8x N. 
0.6 

When the particle is moving to the right its speed is dx ms -] and therefore the 
dt 

resistive force acting on it is to the left and of magnitude 0.4 dx N, so that the force 
dt 

due to the resistance is - 0.4 dx N in the positive x direction. 
dt 

When the particle is moving to the left its speed is - dx ms -], as dx is now 
dt dt 

negative, and therefore the resistive force acting on it is to the right and of magnitude 

- 0.4 dx N, so that the force due to the resistance is - 0.4 dx N in the positive x 
dt - dt 

direction. Therefore whichever direction the particle is moving in the force in 

the positive x direction is -0.4 dx N. You would not normally be expected to 
dt 

analyse the situation as carefully and can usually assume that if the resistance is cv N 
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then the force in the positive x direction is - c dx N. It is not always true, whatever 
dt 

the resistance law, that the force in the reference direction is the same whatever the 

direction of motion. (The result can be shown to be true whenever the resistance is an 

odd function of speed) 

Applying Newton's law gives 

d2x 
+ de 

d 2x dx 
0.2 = - 0.8x - 0.4 dt' 

+4x O. 

This is a second order equation with constant coefficients and trying, as shown in 

Chapter 1, the substitution x emt gives the auxiliary equation 

m 2 + 2m + 4 O. 

The roots of this are -1 ± It now follows from part (c) of the summary in 

section 1.2 that the general solution is 

x (A cos J3 t + B sin J3 t). 

Differentiating this with respect to t gives 

dx = _ e-t (A cos t + B sin 51 ) + J3 A sin J3 t + B cos J3 t). 
dt 

Initially x = 0.06 and dx 0, and therefore substituting t = 0 into the above 
dt 

expressions gives, A 0.06 and J3 B = A so that 

x 0.06 e-t (cosJ3t + 1 sin J3t) . 

The general form of the motion is seen most easily by rewriting the part in brackets in 

the form a sin ( J3 t + E) where 

a COSE 
1 

J3 and a sinE 1. 

2 1t 
Squaring and adding gives a r;; so that E = and 

..;3 3 

x will be zero for t 

Also Q-.; will vanish when 
dt 

sin( J3t+ ; 

0.12 t. (r;; 1t1 
x = r;; e- sm.1 ..;3t+ I . 

..;3 ( 3) 

1t 1 ( 51t \ .. 1t 
, r;; 'l- · ....... l.e at mtervals r;; . 

3 ..;3 3) ..;3 

( 1t 

J3 cos l J3t + 3 
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O
n. . n 

Le. t = , 13' ....... I.e. at mtervals 13' 

The general form will therefore be as in the following diagram, there will be an 

oscillation in the sense that P will keep on returning to B but the distances from B of 

the points of zero velocity will keep on decreasing and x tends to zero exponentially 

so that the motion will gradually cease. The motion will lie between the two curves 

x = ± 0.12 e-t as shown below. 
13 

x 

,. 

--~ 

X = - 0.12 -/ --e 
13 

In this kind of motion, where some kind of oscillation exists, the damping is said to be 

weak or sub-critical. 

Example 3.22 

We now consider the previous problem when the resistive force is 0.8 v N. 

The difference in this case is that the force in the positive x direction is now - 0.8 dx 
dt 

N and applying Newton's law gives 

0.2 d
2

x = 

dt 2 

dx 
- 0.8 x - 0.8 -, 

dt 

d 2 x dx 
- +4-+4x = O. 
dt 2 dt 

1.e. 

This is a second order equation with constant coefficients and trying, as shown in 

Chapter 1, the substitution x = eml gives the auxiliary equation 

m 2 + 4m + 4 = O. 

There is only one root of this i.e. In = -2 and it now follows from part (b) of the 

summary in section 1.5 that the general solution is 

x = e-21 (At + B). 

Initially x = 0.06 and dx = 0 so that B = 0.06 and A = 2B = 0.12. 
dt 
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The general solution is therefore 

x 

Differentiating this expression gives dx 
dt 

(0.12t + 0.06). 

0.24te-21
• 

Therefore x does not vanish for positive t and the fonn of x will be as shown below. 

t 

The damping in this case is said to be critical. 

Example 3.23 

We now consider the previous problem when the resistive force is v N. 

In this case the force in the positive x direction is now 

law gives 

I.e. 

0.2 d2~ 
dr 

d 2x dx 
+5-+4x 

dt 2 dt 
o. 

dx 
0.8x--, 

dt 

dx d . - N an applymg Newton's 
dt 

This is a second order equation with constant coefficients and trying, as shown in 

Chapter 1, the substitution x emt gives the auxiliary equation 

m 2 + 5m + 4 = O. 

The roots of this are m -1 and m 4 and it now follows from part (a) of the 

summary in 1.2 that the general solution is 

x = Ae- t + Be- 4t
. 

Initially x = 0.06 and dx = 0 so that A + B 0.06 and A 4B = 0, so that B = -0.02 
dt 

and A 0.08 and the general solution is therefore 

x 0.08e- t 
- 0.02e- 4t

. 

For x to be zero e 3t = 0.25 and this does not occur for positive t. Therefore the 

general form for x will be as shown below and again it decreases exponentially with 

time. 
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In this case the damping is said to be strong or overcritical. 

Exercises 3.3 

In questions 1 to 4 a spring of modulus A N and natural length a m is placed on a 

smooth horizontal plane. One end of the spring is fixed at a point A, a particle P of 

mass m kg is attached to the other and the particle is to move in the line of the 

spring though the particle, when moving with speed v ms -I , is subject to a resistance 

to its motion of magnitude kv N. 

1 m = 0.4, A 31.2, a = 0.5, k 10. The particle is displaced a distance of 0.04 m 

from its equilibrium position in the direction away from A and released from rest. 

Find its displacement from the equilibrium position at any subsequent time. 

2 m = 0.5, A 48, a = 0.6, k 4. The particle is projected from the equilibrium 

position in the direction away from A with speed 0.6 ms -I. Find its displacement 

from the equilibrium position at any subsequent time. 

3 m 0.8, A = 12, a 0.75, k = 7.2. The particle is displaced a distance of 0.2 m 

from its equilibrium position in the direction towards A and released from rest. 

Find its displacement from the equilibrium position at any subsequent time. 

4 m = 0.6, A 12, a = 0.8, k 6. The particle is projected from the equilibrium 

position with speed 0.2 ms -I in the direction towards A. Find its displacement 

from the equilibrium position at any subsequent time. 

5 A simple model of the motion of a particle at the end of a spring shows that it 

describes simple harmonic motion of period 2n s. Find the time between 
5 

succcessive maxima of its motion when the resistance per unit mass to its motion, 

when moving with speed v ms-I, is assumed to be 8v N. 

6 A particle, when resistive forces are ignored, makes simple harmonic oscillations 

of period 2n s. Show that if the resistance to the motion is assumed to be 2kv N 
ill 

per unit mass when the particle is moving with speed v ms -1 then the time 
2n 

between successive maxima is J==== 
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7 A particle which is predicted to describe simple hannonic motion of period 8 s in 

the absence of resistance is actually observed to attain its successive maximum 

points from its equilibrium position at intervals of 10 s. Assuming this to be due 

to a resistance to the motion of 2kv N per unit mass when the particle is moving 

with speed v ms -I find k. 

8 The time between successive maxima of the displacement of a particle describing 

damped hannonic motion is 0.1 s. The ratio of the displacements at successive 

maxima is 0.9. Given that the particle is of mass 0.4 kg find the resistance to its 

motion when moving with speed 3 ms -I • 

Miscellaneous Exercises 3 

1 A particle P moving along the x axis describes simple harmonic motion with the 

origin as centre so that its displacement from 0 at time t satisfies the equation 

d 2
x 2 -- + 0} x = o. 

dt 2 

Given that P is instantaneously at rest when x a, show from the above equation 

that v, the speed of the particle at time t, satisfies 
v 2 0}2(a 2 _x2). 

Given that the particle is at 0 when t = 0, prove that 

x = a sin rot. 

Given that the period of the motion is 21t seconds and that its maximum speed is 
3 

24ms -1 , find 

(i) the amplitude ofthe motion, 

(ii) the time taken for P to travel from 0 directly to a point 4 m from 0. 

Given that the particle is of mass 0.25 kg, find 

(iii) the rate at which the force acting on P is working when t == ..:: s , 
9 

(iv) the maximum rate of working of this force. 

2 A particle moves along the x - axis and describes simple hannonic motion about 

the origin 0 with period 6 seconds. When t = 0 s, x 1 m and the particle is 

approaching 0 with speed 1t ms -I. Given that the displacement is of the form 

x a sin ( 0} t + E) fmd, o}, a. E and the maximum speed of the particle. 

75 



Simple Harmonic Motion 

3 Find the general solution of the differential equation 

d2 x d:t 
+2 -+ 5x= O. 

dt 2 dt 

A particle of mass 025 kg moves along the x - axis and at time t sits 

displacement from 0 in the positive x direction is x m. The force acting on the 

particle in the positive x direction is (ax + b :) N, where a and bare 

constants. When x 2 and the particle is moving away from the origin with 

speed 3 ms -1 the force acting on it is 4 N in the negative x direction. When, at 

the same point, the particle is moving towards 0 with speed 3 ms -1 the force 
5 

acting on it is I N in the negative x direction. Show that a = - - and find the 
4 

numerical value of b. 

Hence show that x satisfies the above differential equation. At time t 0 the 

particle is projected towards 0 from the point x 2 with speed 2 ms 1
• Find x 

in terms of t. 

Give a sketch showing how x varies with t. 

4 One end of a light elastic string of modulus 4.9 N and natural length 0.5 m is 

attached to a fixed point A and a particle of mass 0.1 kg is attached to the other 

end. 

The particle is held at A and released from rest. Its speed after it has dropped a 

distance of x m is v ms -1. 

(i) Write down an expression for the speed of the particle when x :s; 0.5. 

(ii) Show, by use of energy or otherwise, that for x ~ 0.5, 

v 2 
= 117.6x - 98x 2 

- 24.5. 

(iii) Show that the acceleration of the particle, for x ~ 0.5, is 98(0.6 - x). 

Deduce that, for x ~ 0.5, the motion is simple harmonic. Find the position 

of the centre of simple harmonic motion and the time taken from the centre 

to the lowest point reached. 

(iv) Find the maximum speed and the maximum depth reached below A. 

5 A particle P moves horizontally along the x-axis and describes simple harmonic 

motion with centre O. At a particular instant x 0.04 m and the magnitudes of 

the velocity and acceleration of P are 0.2 ms! and 1 ms -2 respectively. Find 

(i) the period of the motion, 

(ii) the amplitude of the motion. 
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At time t = 0 s the particle is passing through 0 in the direction of increasing x. 

Find 

(iii) x at any subsequent time, 

(iv) the least positive value of t (correct to two decimal places) when x 0.4 m. 

The simple harmonic motion is produced by a light elastic spring, one end of 

which is attached to P and the other end to the point x -0.5 m. Given that the 

mass of Pis O.3kg, find the elastic modulus of the spring. 

6 A particle P moving along the x-axis describes simple harmonic motion of period 

2n and amplitude a with the origin 0 as centre. Given that P is at x = a at time 
0) 

t = 0, write down an expression in terms of a, 0) and t for the displacement x of P 

from 0 at any subsequent time t. 

Find, in terms of 0), the time taken for P to travel 

(i) from the point x = a directly to the point x = ~, 
2 

(ii) from the point x ~ directly to the point x 
2 

a 

The speed of P at the point A, where x = x I' is 4b 0). The speed of P at the point 

B,wherex X 2 ,(X 2 >x l ) is3bO). GiventhatAB=7b 

(iii) show that x I + X 2 b and hence find x 2 in terms of b, 

(iv) determine a in terms of b. 

7 A horizontal shelf moves vertically in simple harmonic motion and makes 10 

complete oscillations in time 4n s. The maximum speed of the shelf is I ms-I. 

Find the amplitude of the motion. 

Given that there is a small particle of mass 0.2 kg on the shelf, find the 

maximum value of the reaction of the shelf on the particle. 

8 Find the solution of the differential equation 

d2x dx 
-~ + 2 + 50x=0 
dt 2 dt 

with x = 0.28 and dx = 0 when t = O. 
dt 

A particle P of mass 0.2 kg is attached to one end of an elastic spring of 

modulus of elasticity ION and natural length Im. The other end of the spring is 

attached to a fixed point A on a horizontal plane. The particle is free to move in 

a horizontal line through A but its motion is resisted by a force acting in the 

opposite direction to its motion and when the speed of P is v ms -I the force 

acting is O.4v N. At time t 0 the particle is moved so that the spring is straight 
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and extended a distance of 0.28 m, the particle is then released from rest. Show 

that the extension x m of the spring satisfies the above differential equation. 

Find the minimum length of the spring in the subsequent motion. 

9 A particle P of mass 0.1 kg is attached to one end of a light elastic spring of 

natural length 0.5 m. The other end of the spring is attached to a fixed point O. 

The particle is hanging freely in equilibrium at the point B where OB = 0.598 m. 

(i) Find the elastic modulus of the spring. 

At time t = 0 the particle is pulled down to a point 0.1 m vertically below Band 

then released from rest. The subsequent displacement of P from B at time t is 

denoted by x m and air resistance is to be neglected. 

(ii) Express, in terms of x, the force exerted by the spring. 

(iii) Show that 

d2x - + 100x= O. 
dt 2 

(iv) Find the time when P is next at a distance of 0.1 m below B. 

(v) Find the speed of P when at a distance of 0.05 m below B. 

(vi) Without further calculation explain why the answer to (iv) would be 

different if the spring were replaced by a string of the same modulus. 

lOA particle of mass 0.2 kg moves in a straight line with simple harmonic motion 

of amplitude 0.6 m and period 6 s. At time t s after leaving 0, the centre of the 

oscillation, the displacement of the particle from 0 is x ill. 

11 

(i) Find, in terms of t, an expression for x. 

(ii) Calculate the smallest positive value of t for which x = 0.3. 

(iii) Determine, in terms of t, an expression for the rate at which the resultant 

force acting on the particle is working. 

SEA LEVEL 
A 

The diagram shows a cylindrical buoy of height 2 m and mass 440 kg floating 

vertically in a calm sea, the point marked A on the cylinder being at sea level. 

The upward buoyancy force due to the sea, when the length of the buoy beneath 

sea level is d m, is 2750d N. Find the height of A above the base of the buoy 

when the buoy is in equilibrium. 
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(i) The top of the buoy is then moved downwards a distance of 0.2 m 

at time t = 0 s and released from rest. During the subsequent motion the 

downward displacement of A from sea level at time t s is denoted by x m. 

Assuming that 

(a) the motion of the buoy can be modelled by the motion of a particle of 

mass 440 kg at its centre of gravity of the buoy under the action of 

gravity and the buoyancy force, 

(b) that the motion of the buoy does not affect the sea level, 

show that 
d2x 

dt 2 
6.25x. 

(ii) Write down an expression for x in terms of t. 

(iii) State the time taken before A first returns to sea level and the maximum 

speed of the buoy. 

(iv) Find the time taken until A is at a depth of 0.1 m below sea level. 

A passing ship disturbs the sea level so that at time t s the displacement of the 

buoy below the level of the calm sea of the sea is 0.4 sin 2t. The downward 

displacement of A below the original level of the calm sea is again 

denoted by x m. Obtain, but do not attempt to solve, the differential equation 

satisfied by x. 

P B A 
2 ms-1 ...---.----'. __ ---'·O .... O""OO .... O'-"'O...,OOOOloC!f.OO...,Olll!O~OOLJ1 

The left hand diagram above shows a car being driven towards a wall in order to 

test the springing characteristics of a new bumper. The motion of the car can be 

modelled by the motion of a particle P projected, as in the right hand diagram, 

towards the free end B of a spring AB free to slide in a smooth horizontal tube, 

the end A being fixed. The spring is of natural length 0.3 m and modulus of 

elasticity 72 N. The particle is of mass 0.6 kg and is projected with 

speed 2 ms -I towards B. 

(i) Show that, at time t s after P strikes B, and while P is in contact with B, the 

compression x m of the spring satisfies 

-400x. 
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(ii) Find the maximum compression of the spring and the time taken to achieve 

that compression. 

(iii) Find expressions for the displacement and velocity in terms of t. 

(iv) Find the time taken for the speed of P to drop to 1 ms -I for the first time. 

(v) What does the model predict about the speed of the car after a time 11: s. In 
20 

what way is this prediction unrealistic? 

13 In this question it is assumed that the motion of the water level at the mouth of a 

harbour can be modelled as a simple harmonic oscillation. The time interval 

between high tide and low tide is 6.25 hours, at high tide the water depth is 10 m 

and at low tide it is 7 m. Write down the amplitude and period (in hours) of the 

oscillation. Measuring time t in hours, with t = 0 corresponding to high tide, 

determine the depth of water at the harbour mouth at time t. 

On a particular day the last high tide occurs at 1910 hours. Find the latest time, 

on that day, that a boat requiring a minimum depth of 9.7 m can enter the 

harbour. 

Determine the rate, in cm per minute, at which the level of water would be falling 

at that time. 

14 A particle is moving in a straight line with simple harmonic motion, 0 being its 

centre of oscillation. When the particle is 12 cm from 0 its speed is 10 cms-) 

and when the particle is 5 cm from 0 its speed is 24 cms -1 • Find its amplitude 

and period of oscillation. 

If A and B are on opposite sides of 0 such that OA 12 cm and OB = 5cm, find 

the time taken by the particle to travel directly from A to B. 

15 One end A of an elastic string, of natural length a, is held fixed. To the other end 

B is attached a particle of mass m which hangs freely at a depth of 6a below A. 
5 

The particle is pulled vertically downwards through a distance of a , held at rest 
5 

and then released. Write down Newton's equation of motion for the particle when 

it is at a depth 6a -L x below A during the subsequent motion. Find x as a 
5 

function oftime. What is the periodic time of the motion? 
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16 A body moves in a straight line so that its displacement x m at time t s is given 

by 

x 3 cos 11: t + sin 11: t. 

Show that the motion is simple harmonic. Find the period and amplitude of the 

motion. 

17 A light string AB obeying Hooke's law is of natural length 1 m and has the end A 

fixed. When a particle of mass 2 kg is attached to the other end B and allowed 

to hang, the string is extended by 0.14 m. Find the modulus of elasticity, stating 

the units in which it is measured. 

The particle is pulled down a further 0.2 m then released from rest. Show that 

until the string becomes slack the motion of the particle is simple hannonic. 

Show also that the particle passes through the equilibrium position after 

approximately 0.19 seconds and find the speed of the particle at that time. 

18 A particle P of mass m rests on a smooth horizontal plane. Two light horizontal 

springs AP and BP are attached to P, A and B being fixed points, and APB being 

a straight line. AB is of length 2a. Both springs are of natural length a and 

modulus ka. The system is released from rest at t 0 with AP = 7 a and 
6 

BP = Sa. Given that at time t AP is of length a + y, derive the equation of 
6 

motion of P. Hence show that the motion is simple hannonic of period 

211: /rn. Vu 
Hence find y in terms of t. 

19 One end A of an elastic spring AB is held fixed. When a particle is attached to 

the spring at B and allowed to hang freely the extension of the spring is 0.2 m. 

The mass is pulled down vertically through a further small distance and released 

from rest. Show that the subsequent motion is simple harmonic of period 211: s. 
7 

20 A particle describes simple harmonic motion along the x-axis with centre at O. 

When x 3 m the speed (in ms -1) and acceleration (in ms ) of the particle are 

equal in magnitude. Given further that the maximum speed of the particle 

is 2 ms -j , show that the period and the amplitude of the motion are 2~ sand 

2.J3 m respectively. 
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21 Two particles A and B move in simple hannonic motion about 0 with 

period2re.J3 s and amplitude 2.J3 m. A is released from rest at t = 0 s from the 

extreme point P where x = 2.J3 m. Particle B is released from P at time 

.J3 re s. Show that the particles will collide 3.J3 re s after the release of B. 
2 4 

Find how far from 0 the collision will occur. 

22 One end of a light elastic string of natural length a and modulus 2 mg is attached 

to a fixed point 0 and the other end to a particle of mass m. The particle, 

initially at rest at 0, is allowed to fall. Find the greatest extension of the string 

in the motion and show that the particle will again reach 0 after a time 

f!(re + 2 - tan-! 2) 

23 A particle suspended from a fixed point by a light elastic string of natural length 

I, makes vertical oscillations of amplitude a « I). The modulus of elasticity of 

the string is equal to the weight of the particle. As the particle rises through its 

equilibrium position it picks up, from rest, a second particle, also of mass m and 

the combined masses continue to oscillate. Show that the amplitude of that 

oscillation is ~12 + a; . 

24 A body is moving in a straight line with simple hannonic motion. When its 

distances from the central point are 3 m and 4 m respectively the corresponding 

speeds are 5 ms -! and 3.75 ms-!. Find the amplitude and period of the motion. 

Show that the particle takes 2 re s to move 2.5 m from the central point. At what 
15 

time after passing through the central point is the speed of the body equal to half 

its maximum value? 

25 A body of mass 2 kg on a horizontal platform. 

(i) The platform describes simple hannonic motion vertically of amplitude 0.3 m 

and period 2 s. Find, in terms of g, the greatest and least forces on the 

platform due to the body. 

(ii) The platform describes simple hannonic motion horizontally of period 10 s. 

Given that the greatest speed of the body is 0.12 re ms! and also that it does 

not slip on the platform, show that the coefficient of friction is greater than 

O.024re 2 

g 
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26 A particle of mass m free to move on the x-axis is attracted towards the origin 0 

by a force which is directly proportional to the distance of the particle from 0 and 

is resisted by a force which is directly proportional to its speed. Show that at 

time t s the displacement x m of the particle from 0 satisfies a differential 

equation of the form 

d2 x dx 
+2kn dt + n 2 x= 0, 

where k and n are positive constants. 

The particle is projected from 0 and it is observed that it returns to 0 at regular 

intervals. Find the condition that has to be satisfied by k. 

The time to travel from one point of instantaneous rest to another is 
1t 

found to be - s. 
2 

Show that 

n 2 (1 - e) 4. 

It is also observed that the distances from 0 of successive points where the 

particle comes to rest are in the ratio 5 to 3. Find the numerical values of k and n. 
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Circular Motion 

Chapter 4 

Circular Motion 

After working through this chapter you should 

• be familiar with the expressions for the components of velocity and acceleration 

for motion in a circle, 

• be able to use the above expressions to solve problems involving the motion of a 

particle moving with constant speed in a horizontal circle; the motion of a car on a 

banked track is one example of such a motion, 

• be able to solve problems of a particle moving in a vertical circle, such problems 

provide a simple model of fair ground rides such as "loop the loop" . 

4.1 Basic Kinematics 

y - sin e i + cos e j 
cos e i + sin e j 

---r-------+--~--_+--.x 

If a particle P moves in a circle of radius r and centre 0 as shown in the diagram then 

its position at any time is determined completely by its x- and y- coordinates. 

These can be expressed in terms of rand e , the angle between the radius to the circle 

and the x-axis giving x = r cos e and y = r sin e. 
The position vector of the particle can be written as 

r = r(cos e i+sin e j), 

where i and j are unit vectors parallel to the x- and y- axes respectively . The angle e 
can vary with the time t and r will therefore also vary with time. The velocity v is 

found by differentiating r with respect to t (remembering that r is constant) i.e. 
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v - (r( cos 8 i + sin 8 j)) + J d d Sine.) 
dt \ dt 

( . de. de 'j\ d8 ( . 8' 8 .) = r -Sme-l+ COSe-] = r- - sm I + cos J. 
\ dt dt dt 

The vector - sin 8 i + cos 8 j is a unit vector (since sin2 8 + cos2 8 = 1), and, as 

shown in the diagram, it is perpendicular to OP and in the direction shown in the 

diagram, that is, it is in the sense of 8 increasing. 

The velocity is therefore of magnitude r d8 = re giving the speed v as r 18 I, e is 
dt 

called the angular velocity and 18 I the angular speed of the particle. For time 

measured in seconds the unit of angular speed is rads- i . The normal convention is 

that the sense of increasing 8 is anti-clockwise so that 8 positive refers to an 

anticlockwise rotation and 8 negative refers to a clockwise rotation. 

(Note: Calling 8, which is a scalar, the angular velocity is a simplification to avoid 

using vectors unnecessarily. Angular velocity is correctly defined as (1 k where k is a 

unit vector out of the page. The positive direction ofk is that of the motion of a screw 

placed vertically on the page and turned anticlockwise. A particle describing a circle 

in the plane is effectively rotating about an axis perpendicular to the plane and the unit 

vector k is in fact along the axis of rotation. For motion in a plane there is only one 

axis of rotation and introducing k would tend to complicate expressions. For more 

general problems such as the motion of a tennis ball in the air, when the motion 

involves rotation about more than one axis, a vector form has to be used.) 

We consider first the case when P has a constant speed, that is, (1 has the constant 

value (0 i.e. 

(1 (0. 

If (1 a at time t = 0 then integrating the above with respect to t gives (1 = a + rot, 

therefore (1 will have changed by 2 n, the particle will have returned to its initial 

position in time/
2
:/. Therefore the motion is periodic with period Twhere 

T 
2n 2n 

I ro I angular speed 

For (1 constant the expression for v can be differentiated again with respect to t to give 

the acceleration a and 
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a :t(r~~(Sinei+coSej)) = -r(~~y(COS e i+sin e j) 

= - r (0 2 (cos 8 i + sin 8 j ). 

The vector cos () i + sin () j is the unit vector along OP in the sense away from 0 and 

therefore the acceleration is directed towards the centre and of magnitude (02 r. 

Since the speed v is equal to r 181 = r I (0 I the magnitude of the acceleration can be 

v2 

written as 
r 

Summary for motion at constant angular velocity (i.e. constant speed) 

velocity rm 

" acceleration 
P / m2r(v2/r) 

"'-----t---+i 

The only component of velocity is perpendicular to the radius vector and its value in 

the sense of increasing 8 is r(O (see diagram). 

The only component is along the radius vector, directed towards the centre and its 

v 2 

magnitude is (02 r =- (see diagram). 
r 

4.2 Motion at constant speed in a horizontal circle 
The above results will now be applied to problems of motion at constant speed in a 

horizontal circle. The basic equation governing the motion of a particle of mass m 

under the action of a force F is, 

ma = F, 

( .' \ 

where a denotes the acceleration li.e. o~ ~j. 
dr 
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The general method of solution is to consider the components of the above equation in 

particular directions. The most obvious directions for circular motion are along and 

perpendicular to the radius in the plane of motion and perpendicular to the plane. 

Since the motion is horizontal there is no acceleration perpendicular to the plane and 

so the total vertical component of the forces acting will be zero that is, the vertical 

components of the forces acting are in equilibrium. 

If the component acting towards the centre of the total force acting is denoted by Fr 

then from the results ofthe previous section, 
mv 2 

/nm 2r Fr, 
r 

where v denotes the speed of the particle and m denotes its angular speed. 

There is no acceleration perpendicular to the radius vector in the plane of motion and, 

therefore, there can be no force in that direction. This is effectively the basic 

modelling assumption made in assuming motion at constant speed in a horizontal 

circle i.e. the nett force in the direction of motion is zero. Effectively such a motion 

assumes that there is no resistance along the path. 

It is possible to interpret the above equation as a statical equilibrium equation where 

the inward force Fr, is balanced by the 'outward' force m m 2 r, which is referred to as 

the 'centrifugal' force. We shall not use this approach as it is rather artificial to try and 

reduce Dynamics to Statics when, in fact, Statics is a particular case of Dynamics! 

Centrifugal force is effectively a fictitious concept but it can be used, if sufficient care 

is taken, to solve problems involving circular motion. However the concept of 

centrifugal force is difficult to generalise to the case of non-unifonn motion. It is 

usually wiser to use Newton's laws for all motion problems without confusing the 

issue by introducing 'fictitious' forces. 

To solve any problem involving motion at constant speed in a horizontal circle all that 

is necessary to do is 

Ca) consider vertical equilibrium, 

(b) calculate the magnitude of the force Fr acting towards the centre and then use the 

above equation. 

These principles are illustrated in the following examples. 
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Example 4.1 

A particle of mass 1.5 kg is attached to one end of a light string of length 0.2 m and 

made to describe a circle, at constant speed, on a smooth horizontal table. The string 

is such that it will break when the tension in it exceeds 2.7 N. Find the maximum 

angular speed of the particle. 

The situation is as shown in the diagram where the only radial force acting on the 

particle is the tension which is denoted by TN. The radial equation of motion is 

1.5 x 0.2ID 2 = T, 

where the angular velocity is denoted by ID rads -I . 

The maximum value ofthe tension is 2.7 N which means that maximum value of ID 2 

is 9 so that the maximum angular speed is 3 rads -I . 

Example 4.2 

A particle of mass 0.2 kg is placed at a distance of 0.3 m from the centre of a turntable 

which can rotate about a vertical axis through its centre. Given that the coefficient of 

friction between the particle and the turntable is 0.25 find the maximum constant 

angular speed at which the turntable can rotate without the particle slipping. 

RN 

~ 
The turntable exerts a normal reaction R N and a frictional force of F N on the 

particle. Since the particle is moving with constant angular speed the total horizontal 

force perpendicular to the radius is zero, the only forces that could act being friction 

and air resistance. Therefore, assuming that air resistance may be neglected, the 

friction force perpendicular to the radius is zero. Therefore the friction force acts 

radially as shown in the diagram. 

Resolving vertically gives 

R 0.2 x 9.8 1.96, 

and the radial equation of motion is 

0.2 ID 2 x 0.3 = F, 

where the angular speed is denoted by ID rads -I . 
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The maximum value of F 0.25R = 0.49 and therefore the maximum value of 

0) satisfies 

0.060) 2 = 0.49, 

giving the maximum value of the angular speed as 2.9 rads- l
. 

Example 4.3 

A car moves without skidding at a constant speed of 25 ms -] in a horizontal circle of 

radius 125 m. Assuming that there is no friction acting in the direction of motion 

determine the minimum value of the coefficient of friction. 

RN 

i 
FN~ +-::: 

The forces acting on the car are, as shown in the diagram, the friction force F N 

directed towards the centre of the circle and the vertical reaction R N. The mass of the 

car will be assumed to be m kg. 

The radial equation of motion is 

25 2 

m- = F. 
125 

Resolving vertically shows that 

R 9.8m. 

Since F S /-l R it follows that 

i.e. /-l;?: 0.51. 

Example 4.4 

Find the maximum speed at which a car could drive round the circle in the previous 

example if the coefficient offriction were 0.3. 

Using the same diagram and notation the radial equation of motion is now 

v 2 

125 
F, m 
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where the speed is denoted by v ms -\. The expression for R is unchanged and the 

condition F ::; 0.3 R shows that v ::; 19.17 so that the maximum speed cannot exceed 

19.17 ms-I. 

Example 4.5 

One end of a light elastic string of natural length 0.3 m is attached to a fixed point 0 

on a smooth horizontal table and a particle of mass 0.25 kg is attached to the other 

end. The particle is made to describe with constant speed 5 ms -I, on the table, a 

circle of radius 0.4 ill and centre O. Find the modulus of elasticity of the string. 

The situation is identical to that in the diagram shown in Example 4.1 where the only 

horizontal force acting is the tension which is denoted by TN. The radial equation of 

motion is 

giving T= 15.63. 

52 
0.25 x 

0.4 
T, 

If the modulus IS denoted by A N then, by Hooke's law, T = A x 0.1 and 
0.3 

therefore A = 46.9. 

Example 4.6 

The left hand diagram shows a hollow circular cylinder of radius 0.35 m rotating 

about its axis and making one revolution per second. A particle of mass 0.2 kg on the 

inside of the cylinder remains fixed relative to the cylinder throughout the motion. 

Find the least value ofthe coefficient of friction between the particle and the cylinder. 

(This is a simplified model of a particular fairground ride and of the motion in the 

"wall of death") 

0.35 m 
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The forces acting on the particle are shown in the right hand diagram with the normal 

reaction being denoted by R N and the friction force by F N. Since the angular speed 

is constant there is no horizontal force acting perpendicular to the radius to the particle 

and therefore the force of friction is vertical. 

One revolution per second implies that the particle rotates through 2'1t radians in one 

second so that its angular speed is 2'1t rads -I. The radial equation of motion is 

R = 0.2 X 0.35(2'1t)2 = 2.76. 

Since the particle is not slipping downwards the nett vertical force must be zero i.e. 

F = 0.2 x 9.8 = 1.96. 

Also for no slipping F~ f..l R and therefore f..l;::: 0.71. 

Exercises 4.1 

Questions 1 to 4 refer to a particle of mass m kg attached to a light string, the other 

end of which is fixed at a point O. The particle is describing a circle, at constant 

speed v ms-I, on a smooth horizontal plane through O. 

1 m = 1.5, the string is inextensible of length 2 m and v = 9. Find the tension in 

the string. 

2 m = 2 and the string is inextensible of length 3 m and can sustain a maximum 

force of 400 N without breaking. Find the maximum number of revolutions per 

second possible without breaking the string. 

3 In = 1.5 and the string is elastic of un stretched length 0.6 m and modulus 60N. 

Find the extension if the particle makes 1 complete revolution per second. 

4 The string is elastic of unstretched length 0.3 m and, when the particle IS 

suspended from it, is extended a distance 0.02 m. Find the period of revolution 

when the particle describes a circle of radius 0.34 m at the end of the string. 

S A car travelling on level ground describes a circle of radius 80 m at a 

speed of 10 ms -I . Find the least value of the coefficient of friction so that the 

car does not slip. 

6 A car is travelling at 10 ms -\ on horizontal ground in a circle of radius 30 m. 

The coefficient of friction between the tyres and the ground is 0.5. Show that 

the car will not slip. 

7 An athlete throwing a hammer swings the hammer at the end of a wire in a 

horizontal circle of radius 1.8 m. If the hammer makes one revolution per 

second and weighs 7 kg find the tension in the wire. 

8 A particle of mass m is attached to one end of an elastic string of modulus 2mg 

and natural length a. The other end of the string is attached to a point 0 on a 
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smooth horizontal table. The particle moves on the table in a circle centre 0 and 

radius 1.2a. Find the angular speed of the particle. 

9 A "wall of death" in a fairground consists of a cylinder of radius 8 m. Given that 

the motor cycle describes horizontal circles and that the coefficient of friction 

between the motor cycle tyres and the cylinder wall is 0.9 find the least speed so 

that the motor cycle stays on the wall. 

lOA particle of mass m is threaded on a rough horizontal rod which can rotate about 

a vertical axis through a point 0 of itself. The particle is attached to 0 by a light 

elastic string of modulus 8 mg and natural length a. Given that the coefficient of 

friction is 0.4, find the maximum angular speed at which the rod can rotate with 

the particle stationary relative to it and the string of length 1.2 a. 

4.3 Conical pendulum 
A slightly more complicated class of problems arises when considering the motion in 

a horizontal circle of radius r of a particle attached to the end of a light string, the 

other end of which is attached to a fixed point vertically above the centre of the circle. 

The particle describes a circle with constant angular speed CD and the string therefore 

describes the surface of a cone, hence the term conical pendulum. 

T 

-- - - ,.,.. 
mg 

The general situation is illustrated in the diagram above where the string is inclined at 

an angle 8 to the vertical. Taking the particle to be of mass m the equation for 

vertical equilibrium gives 

Tcos 8 = mg, 

whilst the radial component of Newton's law gives 

T sin 8 = mCD 2r. 

The above equations govern the motion in any conical pendulum but have to be 

supplemented by other conditions, depending on the type of problem. In many cases 

the length I of the string will be given rather than the radius of the circle, so that the 

relation a = I sin 8 has to be used. The string may also be elastic, so that the vertical 

equilibrium equation determines the tension and, therefore, the length of the string. 
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A further variant occurs when a particle is constrained to move on the surface of a 

cone. In this case, the normal reaction and, for a rough cone, the tangential reaction 

have to be taken into account in setting up the basic equations. 

In deciding whether a particular motion is possible it is often necessary to use the 

condition Icos 81 s 1 or Isin 01 si. 

In all problems, the basic procedure followed should be to mark the forces clearly in a 

diagram, obtain the equation of vertical equilibrium and the radial equation of motion. 

If more than one particle is involved then this should be done for each particle. This 

procedure is illustrated in the following examples. It is safer always to resolve 

vertically and radially than to use other directions, for example along and 

perpendicular to the string, as resolving in these latter directions can increase the 

chance of an algebraic error. 

Example 4.7 

A particle P of mass 0.5 kg is attached to one end of a light inextensible string of 

length 0.3 m, the other end of which is held fixed at a point O. P describes, with 

constant speed, a horizontal circle whose centre is directly below O. 

During the motion the string is inclined at an angle of 30° to the vertical. Find the 

time for one complete revolution of the particle. 

The previous diagram can be used with 0 = 30° and the tension, radius of the circle 

and angular speed will be denoted by TN, r m and 0) rads -1 respectively. 

Resolving vertically gives 

.. T 9.8 gIVlDg = 

Tcos 30° = T.fj = 0.5 x 9.8, 
2 

The radial equation of motion is 

0.5 0) 2 r = Tsin 30° 

also r 0.3 sin 30° = 0.15 so that T= 0.150)2. 

Therefore 0) 2 
9.8 

37.72, giving 0) 1 d . (. 2n 6. 4 an the penod I.e. 0) IS 

therefore 1.02 s. 

Example 4.8 

A particle of mass 0.3 kg is attached to one end of a light elastic string of modulus 

23.52 N and natural length 1 m. The other end of the string is attached to a fixed 

point 0 and the particle is made to describe, at constant speed, a horizontal circle 

whose centre is directly below O. The string is of length 1.25 m during this motion. 
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Find the angular speed of the motion and the angle between the string and the 

downward vertical. 

The previous diagram is still applicable and the tension, radius of the circle and 

angular speed will again be denoted by TN, r m and 0) rads -1 respectively. 

Resolving vertically gives 

T cos 8 = 0.3 x 9.8 = 2.94. 

The radial equation of motion is 

0.30)2 r = T sin 8, 

also r = 1.25 sin 8 so that 

T = 0.375 0)2. 

The extension of the string is 0.25 m and therefore Hooke's law shows that 

T = 0.25 x 23.52 = 5.88 

and therefore from the equation of vertical equilibrium cos 8 = 0.5 and 8 = 60°. 

Substituting the values for T and 8 into the radial equation of motion gives 

0)2 = 15.68 so that the angular speed of the particle is 3.96 rads- 1
• 

Example 4.9 

Show that for a conical pendulum, with the string being of length I the motion is only 

possible provided that g :s; 0)2 I. 

The basic equations governing the problem are, as found above, 

Tcos 8 = mg, 

and 

T sin 8 = m0)2 r. 

The radius r is given by r = I sin 8 so that the radial equation of motion becomes 

T = m0)2/. 

Eliminating T shows that 

cos 8 = g 
0)21 ' 

therefore, since Icos 81 :s; 1, g :s; 0)2 I thus showing that there is a minimum angular 

speed necessary for the conical pendulum. 

Example 4.10 

Determine the mIlllmum value of the modulus of elasticity so that the motion 

described in Example 4.8 could occur. 

If the modulus of elasticity is denoted by le N then Hooke's law gives 
le 

T= 
4 
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where 'A denotes the elastic modulus and, therefore substituting into Tcos e 2.94 

gIVes cos e = 11.76. Therefore, since Icosel~l, 'A~11.76. 
'A 

Example 4. 11 

A particle describes a horizontal circle with constant angular speed ro on the inner 

surface of a smooth cone of semi-angle 45°, placed with its vertex 0 downwards. 

Find the height above 0 at which motion takes place. 

R 
I 

I 
I 

145° 
I mg 

The configuration is as shown in the diagram with R denoting the normal reaction of 

the cone. Vertical equilibrium gives 

R sin 45° = mg, 

where m is the mass of the particle. The inward force radially is R cos 45° and, 

therefore, Newton's law gives 

R cos 45° = mro 2r, 

where r denotes the radius ofthe circle described by the particle. Eliminating R gives 

~ = tan 45° 1. 
ro 2r 

The required height h is such that r = h tan 45° h and therefore 

Example 4.12 

h 

A o B 
r-----~r-----__ 

TNt: 
t30f 

0.5 x9.8 N 

TN 

0.5 x9.8 N 

The diagram shows a rod AB, of length 3 m, free to rotate about a vertical axis 

through its centre O. Light strings each of length 1 m are attached to A and Band 

each carries a particle of mass 0.5 kg at its end. The rod rotates with constant angular 
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speed so that both strings are inclined at an angle of 30° to the downward vertical. 

Find the angular speed. (This is a simplified model of a fairground ride often known 

as the chairoplane) 

The forces acting on one of the particles are shown in the diagram with the tension in 

the string, the radius of the circle described by the particle and angular speed being 

denoted by TN, r m and 0) rads-1 respectively. 

The equations of motion are effectively the same as in Example 4.4 i.e . 

.J3 Tcos 30° = T- = 0.5 x 9.8, 
2 

and 

0.50/ r = T cos 60° 

The only real difference is that r is now 1.5 + sin 30° 2. From the first equation the 

value of T is found to be 5.66 and substituting this value of T and the value of r into 

second equation gives 0)2 2.83 so that the angular speed is 1.68 rads -J . 

Problems which are mathematically very similar to those of the conical pendulum are 

encountered in investigating the banking of roads so as to increase the maximum 

speed at which a corner may be taken. These problems are discussed in the following 

section. 

Exercises 4.2 

Questions 1 to 5 refer to a particle of mass m kg attached to the end of a light string, 

the other end of which is attached to a point O. The particle describes, with constant 

speed v ms-I, a horizontal circle in a horizontal plane below 0, the centre of the circle 

being directly below O. 

1 The string is inextensible and of length 1.2 m, and is inclined at an angle 

tan- 1 (~J to the downward vertical. Find v. 

2 m 3, and the string is inextensible and of length 1.6 m. Find the tension in the 

string when the particle describes 3 revolutions per second. 

3 Given that the period of one revolution is 2 s find the distance below 0 of the 

circle described by the particle. 

4 m 4 and the string is elastic of natural length 0.6 m. Find the modulus, given 

that when the particle describes 4 revolutions per second the string is of length 

0.8 ID. 

5 m 0.5, the string is elastic of natural length 0.75 m and modulus 100 N, and is 

inclined at an angle of 30° to the downward vertical. Find the period. 
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6 A smooth hollow cone is fixed with its axis vertical and vertex downwards. A 

particle moving on the inner surface of the cone describes a horizontal circle with 

speed v at a height h above the vertex. Find v in terms of g and h. 

7 A smooth hemispherical bowl of inner radius a is placed with its rim uppermost 

and horizontal. A particle describes a horizontal circle of radius 4a on the inner 
5 

surface of the bowl. Find the period of revolution of the particle. 

S One end of a light inextensible string of length 5a is attached to a fixed point A 

which is at a distance 3a above a smooth horizontal table. A particle of mass m, 

is attached to the other end of the string and rotates with constant speed in a 

circle, whose centre is on the table directly below A. Denoting the reaction 

between the particle and the table by R, find the tension in the string 
3mg 

when (i) R 0, (ii) R 
4 

Find the ratio of the times of revolution for the two cases. 

9 A particle of mass m is attached to one end of a light inextensible string of length 

a. The other end of the string is fixed at a point A which is at a height 3a above 
5 

a smooth horizontal table. The particle is held on the table with the string taut 

and projected along the table so that it moves with speed v in a circle. The centre 

of the circle is directly below A. Show that the reaction of the table on the 

. I' ( 15v
2 

\J' partlc e IS m g --- . 
16a 

10 A circular cone of semi-vertical angleais fixed with its axis vertical and its 

vertex A, lowest. A particle P of mass m moves on the smooth inner surface of 

the cone, which is smooth. The particle is attached to A by a light inextensible 

string of length a. The particle moves in a horizontal circle with constant speed v 

and with the string taut. Find the reaction exerted on the particle by the cone. 
v 2 

Determine also the tension in the string and find the condition that has to 
ga 

satisfy in order that the motion is possible. 

11 A particle is attached by two light inextensible strings of equal length to two 

points A and B, which are at a distance a apart with A being directly above B. 

The particle describes a horizontal circle, with its centre on AB, with uniform 

angular speed 0). Show that 0)2 > and find the ratio of the tensions in the 

strings when 0)2 = 9 g . 
a 

a 
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4.4 Banking of roads and tracks 
A car or train moving round a circular bend of a horizontal road or track will have an 

acceleration towards the centre of the bend and so there must be a force acting on the 

car towards the centre of the bend. The principal source of such a force is friction. 

Therefore, on relatively smooth roads this force is small and (since the force is 

proportional to the square of the speed) the speed at which the car can take a bend 

without slipping is also relatively low. A typical calculation is given in Example 4.4. 

If, however, the road is banked, the reaction of the road has a component in the inward 

direction and the possible maximum speed increases. Therefore, banking a bend 

increases the maximum speed at which it can be taken. This principle is also used in 

flying where an aeroplane banks its wings when turning. 

The diagram shows a vehicle of mass m on a bend which is banked at an angle e to the 

horizontal, and the vehicle is assumed to be at a point on the road such that it is 

moving in a horizontal circle of radius r. It can be shown using simple models of 

rolling that for a vehicle travelling on a road at constant speed there is no friction at 

the tyres in the direction of motion. We also assume that there is no friction acting 

along the line of greatest slope of the bank, and the forces acting on the vehicle are 

therefore the normal reaction R and the force mg due to gravity vertically downwards, 

The radial component of R is R sin e and therefore the radial equation of motion is 

Resolving vertically gives 

v 2 

R sin e = m 
r 

R cos e mg. 

Eliminating R gives v2 = gr tan e . 
The value of v given by this equation is known as the 'self-steering' speed because in 

theory if the steering wheel had been set properly, a vehicle travelling at this speed 

would steer round the bend without adjustment. Present practice is that banking 

(called super elevation by traffic engineers) should be such that a 'self-steering' 

vehicle is travelling at the average speed ofthe traffic using the road. 

The idea of using banking so that there is no lateral (i.e. sideways force) is also 

important in railway design. Since railway wheels are flanged a sideways force is 

translated into a force on the rail and it obviously useful to minimise this force, In 
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railway design banking takes the fonn of setting the outer rail very slightly higher 

than the inner one. 

When a vehicle is going faster than the 'self-steering' speed, there has to be a further 

force acting inwards. This is provided by friction, whose magnitude is restricted by 

the value of the coefficient of friction. In practice, the latter has to be detennined 

from empirical data, and using this data, bankings on bends have to be constructed 

such that the bend can be taken safely up to a certain maximum speed. Typical 

calculations are shown in Examples 4.17,4.18 and 4.19. The result v 2 gr tan 0 is 

not one that you would be expected to know and you would nonnally be expected, in 

an examination, to derive it. It is likely that quoting it without derivation would 

actually gain little credit. It will be derived in some of the following but, to avoid 

repetition, it will sometimes be quoted. 

Example 4.13 

Find the speed at which a car of mass 1000 kg, moving in a horizontal circle of radius 

100 m on a road banked at an angle of 5°, would not experience any lateral force. 

9800N 

Since there is no lateral force the only forces acting on the car are the nonnal reaction 

R N and the vertical force 9800 N due to gravity as shown in the diagram. Resolving 

vertically gives 

R cos 5° = 9800. 

If the speed is denoted by v ms- I then the radial equation of motion is 

v2 
1000 -. R sin 5°. 

100 

Eliminating R gives 

v 2 
= 980 tan 5°, 

and therefore the speed is 9.26 ms -I . 

Obviously this is a particular case of the general fonnula but, as mentioned above, it is 

a good idea to get into the practice of deriving it from first principles. You should 

also notice that the same result would have been obtained whatever the mass of the 

car. 
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Example 4.14 

Find the angle of bank of an aeroplane turning with speed 50 ms-Ion a circle of radius 

120 m so that, apart from gravity, the only force acting on the aeroplane is the lift 

which acts perpendicular to the wings. There is therefore no tendency to side-slip. 

The angle of bank is the angle between the horizontal and the plane of the wings. 

9.8m 

If it is assumed that the aeroplane is of mass m kg then the only forces acting on it are 

as shown in the diagram, i.e. the lift L N and the weight 9.8 m N. 

Resolving vertically gives 

L cos e 9.8 m, 

where () is the angle of bank. The radial equation of motion is 

502 

m L sin e. 
120 

2 
Eliminating L gives tan e = 50 and therefore e is approximately 64.8°. 

120 x 9.8 

Example 4.15 

Find by how much the outer rail has to be raised so that a railway truck moving with 

constant speed 15 ms -Ion a horizontal circle of radius 300 m does not exert sideways 

pressure on the rail. The distance between the rails is 1.48 m. 

The situation is effectively equivalent to that in the diagram with the truck on a plane 

inclined at an angle e to the horizontal and the wheels being in contact at A and B 

where AB 1.48. The angle e is determined from the above general result and is 
2 

given by tan e = 15 . The height of B above A is AB sin e 0.11m 
300 x 9.8 
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Example 4.16 

A car of mass 1200 kg travels at a constant speed of 25 ms -] in a horizontal circle of 

radius 150 m on a track banked at an angle of 200 to the horizontal. Find the lateral 

force on the car. 

1200x9.8N 

In this case there will be the reaction R N and the lateral (effectively frictional) force F 

N acting on the car and these forces and the weight are shown in the diagram. 

Resolving vertically gives 

R cos 200 
- F sin 200 1200 x 9.8 11760. 

The radial equation of motion is 

1200 x 252 

R sin 200 + F cos 200 = = 5000. 
150 

F can be found by mUltiplying the second equation by cos 200 and subtracting from it 

the first equation multiplied by sin 200
, this gives (using cos 2 200 + sin 2 200 = 1) 

F 5000 cos 200 11760 sin 200 675, 

the lateral force is therefore 675 N acting down the banking. 

The self steering speed for this banking is (using the result v 2 gr tan e) 

approximately 23 ms -] and as the actual speed is greater than this the force acts down 

the banking. For speeds less than 23 ms -] the force would act up the banking. 

In problems like this where there is both a normal and a lateral force acting an 

alternative approach, which would avoid the algebra in eliminating F, is to obtain the 

equations of motion down, and perpendicular to, the banking. This approach is 

illustrated in Example 4.18 but, unless you are very confident about resolving, it is 

probably better to stick to resolving vertically and using the radial equation of motion. 

Example 4.17 

Find the maximum speed at which the motion in the previous problem would be 

possible without the car slipping up the banking given that the coefficient of friction 

between the car and the banking is 0.5. 

The first equation will be unchanged and, if the speed is taken as v ms -] , the 25 will 

have to be replaced by v. The equations are therefore 
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R cos 200 
- F sin 200 = 1200 x 9.S = 11760, 

1200 x v 2 

R sin 200 + F cos 200 = Sv 2 . 

150 

F can be found as before and 

F = Sv 2 cos 200 
- 11760 sin 200

. 

H is now necessary to find R. This is done by multiplying the first equation by cos 

200 and the second equation by sin 200 and adding the equations. 

This gives, on using cos 2 200 + sin2 200 = 1, 

R = Sv 2 sin 200 + 11760 cos 200
• 

The maximum value of v can be found by using the condition F :-s; 0.5 R , 

l.e. Sv 2 cos 20 0 
- 11760 sin 200 :-s; 0.5 (Sv 2 sin 200 + 11760 cos 200

), 

or v 2 (S cos 200 
- 4 sin 200

) + 11760 sin 200 + 5SS0 cos 200
. 

This gives the maximum speed as 39.4 ms-I. 

Example 4.18 

A road is to be banked so that a car moving with a speed of 25 ms -I in a circular bend 

of radius 125 m can travel without skidding. The coefficient of friction is 0.3. 

Find the least possible angle of banking. 

9.8m 

The car is assumed to be of mass In kg and the forces acting, and shown in the 

diagram, are the normal reaction R N, the friction force F N acting down the banking 

and the weight 9.S In N acting vertically downwards. The acceleration of the car 

. 25
2 

-2 5 -2 . h' 11 d h f h' d' 1 IS --ms = ms actmg onzonta y an t e component 0 t IS perpen ICU ar to 
125 

the banking and in the same sense as R is 5 sin 8 ms -2. Similarly the component of 

the acceleration down the banking and in the same sense as F is 5 cos 8 ms -2. The 

components of the equation of motion normal to and down the banking are 

R - 9. S In cos 8 = 5 In sin 8, 

and F+9.Slnsin8 =5mcos 8. 

Taking components down, and perpendicular to, the banking has avoided the 

algebraic elimination used in the previous two examples. 
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The condition F s 0.3 R gives 

5 m cos e - 9.8 m sine s 0.3(9.8 m cos e+ 5 m sin e), 

I.e. 11.3 tan e 2: 2.06. 

The minimum banking angle is therefore approximately 10.3°. 

Example 4.19 

Show that, if the coefficient of friction is 0.2, then it would not be possible for a car to 

stay at rest on a road banked at an angle of 30° and find the least speed such that, with 

this angle of banking, a car could move in a horizontal circle of radius 100 m. 

9.8m 

The forces acting on the car are the normal reaction RN, the friction force F N acting 

down (or up) the banking and the force of gravity 9.8 m N if the car is taken to be of 

mass m kg. Since the car is initially assumed at rest the force of friction is assumed 

to act up the banking otherwise equilibrium is not possible. 

Resolving up, and perpendicular to, the banking gives 

and 

Therefore 

F = 9.8 m sin 30° 

R = 9.8 In cos 30°. 

F 

R 
tan 30° 0.58. 

This is greater than the coefficient of friction and so the car would slide down. If it is 

assumed that the car moves with speed v ms -I then taking the components of the 

equation of motion up, and perpendicular to, the banking, as shown in the previous 

example, gives 

R - 9.8 m cos 30° 

and F + 9.8 In sin 30° = In 100 cos 30°. 

Using the condition F s 0.2R gives 

9.8sin30o- v
2 

cos30oso.i9.8cos30o+ v
1 

Sin30 n
) 

100 l 100 
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2 

~(COs 30° + 0.2 sin 30°) ::::: 9.8( sin 30° - 0.2 cos 30°). 
100 

The minimum speed is therefore 18.2 ms -1 . 

Exercises 4.3 

1 A car of mass 1000 is moving round a circular track which is banked at an 

angle tan -] 0.2 to the horizontal. The car is travelling in a circle of radius 600 m 

at a speed of 30 ms -1 . the lateral force acting on it. 

2 A road is banked at an angle of 10° to the horizontal at a bend of radius 90 m. At 

what speed should a car travel round the bend so that there would be no lateral 

friction force between the and the ground? 

3 At what angle should an aircraft flying at 200 ms -1 be banked so that it moves, 

without side slipping, in a horizontal circle of radius 2 km? 

4 A circular track of radius 300 m is banked at an angle of 45°. Given that the 

coefficient of friction between the wheels and the ground is 0.4 find the 

maximum speed at which a car can travel round the track without side slipping. 

5 A railway curve is an arc of a circle of radius r and the track is banked at an angle 

a so that there is no lateral force on the rails when the train is moving at speed v. 

Find the lateral force when a train of mass m goes round the curve at speed 1.5v. 

6 The maximum speed at which a car can travel, without skidding, round a circular 

bend of radius 120 m which is banked at an angle of 10° is 25 ms-]. Find the 

coefficient of friction. 

7 Find the angle at which a circular bend of radius 100 m has to be banked so that 

the maximum speed at which a car can travel, without skidding, round the bend is 

20 ms -I. The coefficient of friction is 0.25. 

8 A car describes a horizontal circle of radius 100 m at 18 ms -1 on a track which is 

banked at an angle a to the horizontal. Determine tan a so that there is no 

lateral force acting on the car. Find, for this value of a, the least coefficient of 

friction such that the car can go round the track without slipping at a 

speed of28 I11S-
I

. 

9 A car can travel on a level road round a bend of radius 50 m at a maximum speed 

of 15 ms ~I without slipping. Find, assuming that the coefficient of friction 

would be unchanged, the angle at which the road should be banked so that the car 

could travel round the bend without slipping at a speed of20 ms -1. 

lOA circular track of radius 250 m is banked at an angle of 20°. Given that the 

coefficient of friction between the wheels and the ground is 0.3 find the range of 

speeds at which a car can travel round the track without side slipping. 
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4.5 Circular motion and simple harmonic motion 
We now examine very briefly the relationship between circular motion and simple 

harmonic motion which was mentioned in 3.1. 

y 

x 

The diagram shows a point Q describing in the counter clockwise sense a circle of 

centre ° and radius a with angular speed ill . If 0 denotes the angle between OQ and 

the x-axis then 
dO 
dt 

= ill. 

Integrating this with respect to t gives 0 = ill t + c, where c is a constant. If Q is at the 

point 0 = 0 for t = 0 the constant is zero so that 0 ill t. The perpendicular from Q to 

the y-axis intersects it at the point P, which is referred to as the projection of Q on the 

y-axis. The y coordinate of P is therefore a sin 0 a sin ill t. Therefore the point P 

describes simple harmonic motion, centre 0, amplitude a and period 21t 
ill 

In unit time the angle 0 increases bYill and this is therefore the number of radians 

described per unit time, hence the term natural circular frequency. 

If Q had been at the point corresponding to 0 E at time t = 0 then the 

constant c would be £ and then 0 = ill t + £ and the y coordinate of P would then be 

a sin ( ill t + E). 

r----r----r----+-------+ t 

-----=a 

This is the general form of displacement in simple harmonic motion and therefore the 

motion of the projection on a diameter of a particle describing a circle is simple 

harmonic. The diagram illustrates the behaviour of P as Q describes the circle. 

Equivalently any problem involving simple harmonic motion can be translated into 
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one on motion in a circle with constant angular speed. Effectively the problem is 

translated from one involving algebra and the use of solutions of differential equations 

to one in geometry and you might find this harder. Also most examination questions 

tend to be phrased in such a way that full credit will only be given if the methods 

described in the previous chapter are used. 

The alternative and more geometric approach is illustrated in the following example. 

Example 4.20 

A particle describes simple harmonic motion with amplitude 2 m and period 18 s. 

Find the time taken to travel directly from a point a distance of 1 m from the centre to 

one at a distance of J3 m from the centre. 

The two points are denoted by P and P' and they are the projections onto the line of 

motion of the points Q and Q' on the circle of radius 2 m. e and ~ denote the angles 

between the line of motion and OQ and OQ', respectively. 

OP = 2 cos e= 1 andOP' = 2 cos ~ J3 so that 8= ~ and ~= re. 
3 6 

The angle between OQ and OQ' is therefore re. This is _1_ of the total angle in a 
6 12 

circle (Le. 2 re) and therefore the time taken to travel from P to P' is a twelfth of the 

period i.e. 1.5 s. 

4.6 Kinematics for motion with variable speed 
It was shown in 4.1 that the velocity v of a particle moving in a circle of radius r was 

given by 

v 
de 

r 
dt 

sin e i + cos e j), 

where 0 , i and j are defined in 4.1 and shown in the following diagram. 
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Y sin 9 i + cos 9 j 

cos9i+sin9j 

The acceleration a is found, as in 4.1, by differentiating v with respect to t. In this 

case, however, de is not constant and its derivative has to be included. 
dt 

Therefore 

a =.i(r~(-Sin8i + cosej) I 
dt dt J 

- r(d6)2 (cose i + sine j) + r d
2

: (-sine i + cose D. 
dt dt 

The first tenn above is of magnitude r (~~) 2 directed radially inwards and the 

second is of magnitude r d 2: directed along the tangent in the direction of e 
dt 

increasing. Also 

d(re) 

dt 

dv 

dt 
v. 

Therefore in circular motion when the speed is not constant there are two components 

of acceleration, 
2 

(i) re 2 = ~ directed radially inwards 
r 

and (ii) re = v along the tangent in the sense of e increasing. 

These expressions will now be used in the following section to investigate probiems 

involving motion in a vertical circle. 

107 



Circular Motion 

4.7 Motion in a vertical circle 
So far the only problems examined are those when the only force in the plane of 

motion is radial so that the angular speed remains constant. We now consider a class 

of problems - those involving motion in a vertical circle - where the angular speed is 

not constant. 

Typical problems which can be modelled as a particle moving in a vertical circle are 

the motion of a particle whirled at the end of a string (or a bucket of water being 

whirled in a vertical circle) and the motion of a car in a roller coaster. The problems 

are mathematically very similar but the interpretation of the results vary. 

The methods to be used will be illustrated by using as a prototype problem that of the 

motion of a particle threaded on a smooth vertical circular loop of wire. 

mg 

The diagram shows a vertical circular wire of centre 0 and radius a on which a bead P 

of mass m is threaded. The angle between OP and the downward vertical is denoted 

by 8. The wire is assumed to be smooth so that the only force that it exerts on P is 

radial and of magnitude R and this is shown in the diagram acting radially inwards. 

The only other force acting on P is the force of gravity vertically downwards which 

has a component mg cos 8 acting outwards and a component mgsin 8 tangentially in 

the direction of decreasing 8. The components of the acceleration of P radially 

inwards and tangentially are a8 2 and a8. 

The radial and tangential components of Newton's law give 

R - mg cos 8 = m a8 2, 

m a8 = - mg sin 8 . 

The second equation is the differential equation relating 8 to t, and the first step is to 

try and integrate this equation. One method is to multiply both sides of the equation 

by 8 giving 

ma88 - mg sin 88. 

Also 88 
1 de 2 

.' dcos8 
and sm 8 8 = - ---

2 dt dt 
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so that the equation of motion becomes 

1 de2 dcose 
ma--- = mg --. 

2 dt dt 

This equation can be integrated to give 
] . 
2" mae 2 mg cos e + constant. 

An alternative method of carrying out the above integration is to use 

e de 

dt 

1 d02 

2 dt 

de . 
- e (applying the chain rule), 
de 

If it is assumed that P has a speed U (Le. e' ~ I 
a J 

at its lowest point A (when e 

the constant can be found by substituting into the expression for e 2 giving 

a 2 e 2 = U 2 + 2ag( cos e - 1). 

0), 

This equation could also have been obtained by using conservation of energy, this is 

actually the most direct method and will be considered below. 

The value of e can now be substituted into the equation for R giving 

mu 2 

R = -- + mg(3 cos e 2). 
a 

The basic problem has now been solved and it now remains to interpret it. The 

interpretation varies with the type of problem but before going any further it is worth 

looking at the use of energy conservation. 

Energy Conservation 

It can be proved that 

Kinetic energy + Potential energy due to gravity 

+ Elastic energy (if an elastic string is involved) = Work done by other forces. 

A proof is given in M2 for one dimensional motion but it is possible, by using the 

work energy principle, to prove the above result. You will not be expected to derive a 

proof as some of the mathematics necessary is not covered in your course. 

In the case of the bead threaded on the wire the only other force acting is the reaction. 

The wire is smooth so the reaction is always perpendicular to the direction of motion 

and the work done by it is therefore zero. Therefore the total energy is conserved. 

The work done by the tension in an inextensible string is also zero and energy is again 

conserved. 
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We return now to the problem of the bead on the wire. The potential energy, taking 

the potential energy to be zero at the level of the centre of the circle, is - mga cos e. 

The kinetic energy is ~ mv 2 , where v denotes the speed, and therefore conservation of 

energy gIVes 
1 2 2" mv - ga cos e = constant. 

This, when you remember that v = lae I, is the equation found by integrating the radial 

equation of motion. Using energy conservation avoids having to integrate the 

equation of motion directly. 

Interpretation of results 

The basic results are 

a 2 e 2 = U 2 + 2ag( cos e -1), 

and 
mu 2 

R = -- +mg(3 cos e -2). 
a 

If e = 7t is substituted into the equation for El 2 this gives its value at the highest 

point as u2 - 4ag. If u2 < 4ag this expression will be negative meaning that the 

particle will not reach the highest point and will just oscillate on either side of the 

vertical through the centre. 

There are five slightly different problems involving motion in a vertical circle: a 

particle whirled at the end of a string, a particle moving on the inside or outside of a 

smooth circle, a particle threaded on a bead or attached to the end of a thin rod (the 

last two are effectively the same). The main difference between the problems is the 

way in which the motion breaks down (i.e. whether the string becomes slack or breaks 

and whether the particle comes off the circular path). The problems of the threaded 

bead and rod are slightly different in that the motion cannot break down other than by 

the wire or rod collapsing. 

Particle on inside of a cylinder 

For a particle on on the inside of a cylinder the motion will be as shown in the above 

diagram with the reaction R inwards and so the expression for R must always be 

positive. For e = 7t, R is equal to u2 - Sag. If u2 < Sag the particle will drop off the 

cylinder, and the particle will move as a projectile for a while. The actual value of e 
at which the break down occurs is found by setting R = O. 
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Particle on an inextensible string 

This problem is mathematically identical to that of a particle on the inside of a 

cylinder. The reaction R has to be replaced by the tension T of the string. The string 

will become slack when, as above, u2 < 5ag. 

Particle on outside of cylinder 

The forces acting on a particle at the lowest point on the outside of a cylinder will all 

be downwards and, as you would expect, the particle drops down. Therefore, in this 

case, it is not sensible to project a particle from the lowest point with speed u and 

different initial conditions have to be used. The equations of motion could be 

obtained by replacing R by -R above but, in order to get more practice, it seems 

better to start again. 

s 

The diagram shows a vertical section of a circular cylinder centre 0 and radius a on 

which a particle P of mass m can move. The angle between OP and the upward 

vertical is denoted by O. (When OP is horizontal the horizontal force acting on it is 

outwards and its horizontal acceleration is inwards. This is an impossible situation 

and therefore the particle will have dropped off before reaching this position. It is 

better to use the angle with the upward vertical since 8 will always acute.) Since the 

cylinder is smooth the reaction of the cylinder will be radially outwards and denoted 

by S. The radial equation of motion is 

mgcos 0 -S = ma8 2, 

the potential energy (taking the potential energy to be zero at the level of 0) 

is mga cos 8. 

Conservation of energy gives 
I 
2: mv2 + mga cos 8 = constant. 

If the speed of the particle at the top is assumed to be U (U 2 < ga), thcn the constant 

. 1 2 h 
IS 2:mU + mga sot at 

V 2 U 2 + 2ga (1 - cos 0). 
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This becomes, using v = lae I, 
a 2 El 2 = U 2 + 2ga (1 cos e). 

Substituting in the radial equation gives 

s 3mg cos e - 2mg 
a 

Substituting 6 0 in this equation for S gives S 
mU 2 

.. 
mg - --, and the restnctIOn on 

a 

U means that this is positive so that there is a positive reaction at the highest point and 

the particle will not fly off. 

If U 2 > ga then S would be negative for e = 0 and the particle would just fly off at 

the top of the cylinder. 

For e = n S will be negative so the particle will fall off before getting to the level of 
2 

the centre of the cylinder, as predicted above. The actual value of 0 at which this 

happens is found by setting S 0 and solving for 0, this gives 

U 2 2 
cos e= --+ 

3ga 3 

Problem solving 

The first step is, as usual, to show in a diagram the forces acting and, in particular, to 

make sure that (when relevant) they are in the physically sensible sense (for example 

the tension in a string is always radially inwards). Once the forces have been 

determined the next step is to write down the radial equation of motion and the 

equation of conservation of energy. It is very important to use your initial conditions 

carefully in order to find the constant in the energy equation. In many cases it is 

simpler to use speed rather than angular speed, particularly if you are given 

information about speeds or asked to find speeds. In such cases you use the radial 
2 

acceleration in the form ~. The expression obtained for 8 2 or v 2 can then be used to 
r 

express the radial force in terms of O. 

An alternative to using conservation of energy is to obtain the tangential equation of 

motion and integrate it as above. This method has the snag of making errors more 

likely. 

In harder problems where you are uncertain that energy is conserved (if for example 

friction is involved) you will have to use the tangential equation of motion and 

. " e de attempt to mtegrate It usmg = 
dt 

dO . 
- 0 . You may also need to use the 
de 

tangential equation when more than one particle is involved. 
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You then have to try and interpret the results for your particular problem. The 

variations in the type of problems that can occur are produced almost entirely by 

varying the way in which the particle is constrained. If for example the particle is 

attached to the end of a light inextensible string (or moves on the inside of a smooth 

cylinder) then motion is only possible for positive values of the tension (or reaction) 

and the conditions for the motion to be possible, or the value of e for which the 

motion ceases to be possible (that is the particle leaves the circle), are often sought. 

Similar problems occur for motion on the outer surface of a cylinder or sphere. The 

reaction in this case is outward and the condition for a positive reaction may have to 

be applied to determine whether or not the motion is feasible. 

You may also be required in particular cases to determine whether or not complete 

revolutions are described. The smallest value of e 2 occurs at the highest point of the 

circle and for complete revolutions this has to be positive. It is of course necessary to 

make certain first that the motion has not already ceased to be possible before 

reaching this position. 

Example 4.21 

A child of mass 25 kg is on a swing and swings freely through an angle of 30° on 

either side of the vertical. The ropes of the swing are 2 m long. Assuming that the 

motion of the child can be modelled by that of a particle of mass 25 kg attached to an 

inextensible rope of length 2 ill, find the speed of the child when the rope is vertical 

and also the tension in the rope at that instant. 

TN 

25 X 9.8 N 

The diagram shows the motion when the rope is at an angle e to the vertical with the 

tension in the rope being denoted by T N and acting inwards. 

The radial equation of motion is 

T - 25 x 9.8 cos 8 
2 

25~. 
r 

The equation of conservation of energy is 
1 
-x 25v2 -25 x 9.8 x 2cose = constant. 
2 
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The swing stops at 30° on either side of the vertical so v = 0 for e = 30° so that the 

constant is - 25 x 9.8 x 2 cos 30" and therefore 

.!..x25v2 =25x9.8x2(cose 30") 
2 

The value of the speed at the lowest point can be found by substituting e 0 into the 

equation of energy giving the speed as 2.29 ms -1 . 

Substituting this value of the speed into the radial equation of motion for e 0 gives 

the tension as 311 N. 

Example 4.22 

A particle of mass m free to move on the inner surface of a smooth hollow cylinder of 

internal radius 2a is projected from the lowest point of the cylinder with a horizontal 
speed of magnitUde ~2ga. Determine the maximum height that the particle rises 

above the point of projection. 

The forces acting are as shown in the diagram. The radial equation of motion is 

R mg cos e = 2ma8 2 , 

and the equation of conservation of energy is 
1 . 
- m(2a) 2 e 2 - 2 mg a cos e constant. 
2 

The speed when e 0 is = 2ae and substituting these values in the energy 

equation shows that the constant is mga so that 

2a 2 e 2 ga(2 cos - 1). 

e vanishes when cos e = 1 so that the greatest height (2a 2a cos e ) reached above 
2 

the lowest point is a. In this case it is obvious that R is positive when e is acute and 

so the particle does not leave the cylinder before reaching the above position. 
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Example 4.23 

A particle P of mass m is free to move on the outer surface of a smooth circular 

cylinder of radius a, and is released from rest at a depth of a below the highest point. 
10 

Find the height above the centre of the cylinder of the point at which P leaves the 

cylinder. 

R 

The situation is shown in the diagram with R denoting the reaction of the cylinder 

acting outwards. The radial equation of motion is 

mgcos e R mae 2, 

and the equation of conservation of energy is 
1 . 

ma 2 e 2 + mga cos e constant. 
2 

9 . 9mga 
Initially, e 0 when cos e 10 so that the constant IS equal to 10 . Therefore, 

5ma 2 e 2 + lOmga COS e = 9mga. 

Substituting for e in the radial equation of motion gives 

5R = 15 mg cos e - 9mg. 

The reaction vanishes when cos e 2, that is, when P is at a distance 2a above the 
5 5 

centre. 

Modelling a real situation 

If a round circular cake tin was placed on its side and a small particle placed at the top 

and gently disturbed then this problem could be modelled by that of a particle set off 

from rest from the top of a circular cylinder. The situation is exactly as in the 

previous example and the radial equation of motion is unchanged. Since the particle 

is released from rest from the highest point (you actually have to assume that it is 

given a small velocity otherwise it will not move!) the constant in the equation of 

energy is now mga so that 
1 . 
-ma 2 e 2 + mga cos e mga. 
2 
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Substituting in the radial equation gives 

R = 3mgcos (1 2mg 
a 

For a particle just disturbed from rest U o and therefore the particle would 

leave the cylinder when the radius had turned through an angle (1 where cos (1 

i.e. 0 48.2°. 

2 
3 

In practice modelling a particle sliding would not be particularly accurate as friction 

would have to be taken into account. However a marble rolling could be modelled 

relatively accurately by a particle sliding on a smooth surface since the friction at the 

point of contact does no work. For a marble rolling with speed v the kinetic energy 

can be shown to be ~ mv 2 and using this value the equation of conservation of 
10 

energy becomes 

7v 2 10ga Cl - cos e). 

Substituting in the radial equation of motion i.e. 

v2 

mgcos 0 -R m 

gIves 

The reaction vanishes for cos 0 

Exercises 4.4 

a 

R (
17 10) 

mg 7cos e -7 . 

10 
giving 0 53°. 

17 

Questions I to 4 refer to a particle, describing a vertical cir-cle, attached to one end of 

a light inextensible string oflength a. 
1 Given that the speed at the highest point is 8jg;;, find the speed at the lowest 

point. 

2 Find the speed with which the particle is projected from the lowest point so that 

it describes semi-circles. 

3 Given that the particle is of mass 0.2 kg, a = 0.4 m and the tension when the 

string is inclined at an angle 60° to the downward vertical is 15 N, find the speed 

at the lowest point. 

4 Given that a = 0.5 m and that the greatest and least tensions are in the 

ratio 3 to 1, find the greatest speed of the particle. 

5 An aeroplane is flown at a constant speed of 180 ms-1 in a vertical circle of radius 

1200 m. Find the force exerted by the seat on the pilot, of mass 75 kg, at the 

lowest and highest points. 
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6 A man swings a bucket full of water in a vertical plane in a circle of radius 0.4 m. 

7 

What is the smallest velocity that the bucket should have at the top of the circle 

if no water is to be spilt. 

The diagram shows a cylinder of radius 0.35 m rotating about its axis, which is 

horizontal, with constant angular speed (j). A particle of mass rn on the inner 

surface of the cylinder is rotating without slipping relative to the cylinder. The 
coefficient of friction between the particle and the cylinder is .u. Find the 

condition to be satisfied by (j) if the particle has not slipped at the position 

shown. 

8 A bead of mass rn is threaded on a smooth circular loop of wire of radius a which 

is fixed in a vertical plane. The bead is released from rest at the end of a 

horizontal diameter. Find the reaction of the wire when the bead has turned 

through an angle e . 
9 A particle is released from rest on the surface of a smooth sphere of radius a at a 

height a above the centre of a smooth sphere of radius a. Find the height above 
2 

the centre at which the particle leaves the sphere. 

10 A particle of mass m is free to slide on a circular wire hoop of radius a in a 

vertical plane. The wire is such that, once the particle is set in motion, it 

experiences a force of constant magnitude 3rng opposing its motion. The 

particle is projected from the lowest point of the wire and it comes to 

instantaneous rest opposite the centre of the wire. Find the speed of projection. 

Miscellaneous Exercises 4 

1 A fixed point 0 is at a height h above a smooth horizontal table and one end of a 

light inextensible string is fixed at 0 and a particle P, of mass rn, is attached to 

the other end. The particle is made to describe a circle on the table, with constant 

angular speed (j), and with the string taut. The centre of the circle is directly 

below O. Find, in terms of rn, g, (j) and h, the magnitude of the reaction of the 

table. Determine the greatest value of (j) 2 for which such a motion is possible. 
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The table is then removed and the inextensible string replaced by a light elastic 

string of modulus mg and natural length a. The particle P is then constrained to 

describe horizontal circles, with centre directly below 0 with constant angular 

speed Q. Denoting the tension in the by T, find an expression for the 

length of the string 

(i) in terms of T, m, g and a, (ii) in terms of T, m and Q. 

Hence find T in terms of m, g, a and Q. 

2 A particle of mass m is attached to one end of a light inextensible string of length 

a whose other end is attached to a fixed point O. Initially the particle is held at 

rest at a point B with the string taut and OB inclined at an angle TI to the 
3 

downward vertical through O. 

(a) The particle is projected horizontally with speed u from B so that it 

describes, with constant speed, a horizontal circle whose centre lies on the 

vertical through O. Find u and time taken to describe one complete 

circle. 

(b) The particle is projected from B, perpendicular to OB in the vertical plane 

containing OB with speed w so that it starts describing a vertical circle, 

centre O. 

Find the tension in the string when it is inclined at an angle 8 to the downward 

verticaL Find also the least value of w so that the particle describes complete 

circles. 

3 A particle of mass m is suspended from a fixed point A by an elastic string of 

natural length b and modulus A. particle describes a horizontal circle with 

angular speed ro with the string being of constant length I (> b), the centre of the 

circle being directly below A. 

Given that the angle between the 

that 

cos 8 

and the downward vertical is 8, show 

lro 2 . 

The breaking tension in the string is 10mg and it is found that this occurs 

when bro 2 
= 9g. Find cos 8 when the string breaks and express A in terms of 

m andg. 

4 A particle of mass m is attached by a light inextensible string of length I to the 

vertex of a cone of semi-vertical angle a. The cone is fixed with its axis 

vertical and vertex upwards and the particle moves in a horizontal circle on the 

smooth outside surface of the cone with angular speed ro. Find expressions for 

the reaction R between the cone and the particle, and the tension T in the string. 
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Find the greatest possible value of co in tenus of g, 1 and a if the particle is to 

remain on the cone. 
Suppose now that the string is elastic of natural length a and modulus 

3mg, a = tan -1 (~J and that co 2 = Find the extension of the string. 
4 2a 

5 The maximum speed at which a car can travel around a horizontal circular bend 

of radius 120 m without skidding is 30 ms -j. Find the coefficient of friction 

between the wheels of the car and the road. Calculate the least angle at which 

the road should be banked in order that the car can negotiate the bend without 

skidding at 50 ms "-I, assuming that the coefficient of friction remains 

unchanged. 

6 A car travels, without skidding, at 63 km h -J round a circular bend of radius 80 

m on a horizontal surface. Show that the coefficient of friction between the 

7 

wheels and the road is at least 25 . 
64 

The diagram shows a car of mass m travelling at constant speed in a horizontal 

circle of radius a on a road banked at an angle a to the horizontal. The 
5 

coefficient of friction between the car and the road is 0.6 and sin a The 
13 

car may be modelled as a particle of mass m moving in a horizontal circle of 

radius a. Given that the car is on the point of sliding up the bank 

(a) show, by resolving vertically, that the nonual reaction of the road on the car 
. 13mg 
1S--

9 ' 

(b) find, in terms of g and a, the speed of the car. 

8 In some amusement parks there is a ride which is effectively an open cylinder 

which can rotate about a vertical axis. The riders stand on the base of the 

cylinder but against the surface of the cylinder. When the angular speed reaches 

a certain value the floor is dropped but the riders remain stuck to the surface of 

the cylinder. The radius of the cylinder is 2.5 m and the speed of rotation is 30 

revolutions per minute. Find the smallest possible coefficient of friction 

between the rider and the cylinder surface so that the ride works effectively. 
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L lO: 

An aircraft, in order to travel in a circle, has to bank (Le. tilt so that the wings 

are at an angle to the vertical). The diagram shows an aircraft, banked at an 

angle of 30° to the vertical, travelling in a horizontal circle, at constant height. 

The only forces acting in the plane perpendicular to the direction of motion of 

the aircraft are the lift L, perpendicular to the wings, and the weight Was shown. 

The aircraft is of mass 1200 kg and is moving with constant speed 60 ms -1. 

(a) Modelling the aircraft as a particle find 

(i) the lift, 

(ii) the radius of the circle in which the aircraft is moving. 

(b) The words underlined above imply a modelling assumption about the forces 

acting on the aircraft in the direction of its motion. State what you think 

this modelling assumption to be. 

10 A particle P of mass m is placed at the highest point on the outside of a fixed 

smooth hollow sphere of radius a and centre O. The particle P is just disturbed 

from rest. Assuming that P remains in contact with the sphere, show that the 

reaction of the sphere on P is 

mg (3cos e - 2), 

where e is the angle between the upward vertical and the radius OP. 

Write down the value of cos e at the point where P leaves the sphere. 

A particle Q, on the inside of the sphere is projected horizontally from the 

lowest point of the sphere with speed u. Find u, in terms of a and g, so that both 

P and Q leave the surface of the sphere at the same height above O. 

11 A smooth loop of wire in the form of a circle centre 0 and of radius 0.3 m, is 

fixed in a vertical plane. A bead of mass 0.5 kg is threaded on the wire and 

projected with speed u ms -1 from the lowest point of the wire so that it comes 

to instantaneous rest at a height of 0.1 m above the level of O. Find 

(i) the value of u, 

(ii) the reaction of the wire on the particle when the particle is level with O. 

12 One end of a light inextensible string of length 2a is attached to a fixed point 0. 

A particle of mass m is attached to the other end and moves in complete circles, 
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centre 0, in a vertical plane. Its speed at the lowest point of the wire is 6~. 

Find 

(a) the square of its least speed, 

(b) the greatest tension in the string. 

o 
The diagram shows a vertical cross-section of a fixed circular cylinder with 

radius a; the point A is on the same horizontal level as the point B; the point C is 

on the same horizontal level as the point D and 0 is the lowest point of the arc 

ACDB. 

(a) Iestyn has to set up a mathematical model describing the motion of a particle 

moving on the inside of the cylinder. He sets up a model in which a particle 

P released from rest at the point A reaches the point B and then returns to A 

and the cycle then repeats itself. 

(i) State two physical assumptions that have been made to give this model. 

(ii) Where is the force acting on P perpendicular to its velocity? 

(iii) Is the velocity of P at C equal to that at D? 

(iv) Given that A is at a height ~ above 0 what is the speed of Pat 0 which 
4 

would be predicted by this model? 

(b) Iestyn then uses the model to predict what happens when a particle is 

projected horizontally from the lowest point of the wire with speed u. 

Find the condition that u would have to satisfy in order that the particle goes 

completely round the cylinder. 

14 A particle is suspended from a fixed point A by a light inelastic string of length a. 

Find the speed with which it must be projected horizontally from its lowest point 

in order that it should pass through A. 

15 A bead sliding on a fixed vertical smooth circular hoop of radius a has speed V 

at the lowest point. Prove that the bead makes complete revolutions if V2 > 4ag 

and that the force exerted by the hoop on the bead is always radially inwards for 

V 2 > Sag. If the greatest speed is J7 times the lowest speed show that 

V= ~14;g. 
Find the position of the bead when the force between it and the hoop vanishes. 
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The diagram shows a roller coaster track, the circular part of which has 

a radius of 12 m. The roller coaster is to be designed so that the force towards 

the centre of the track exerted on a passsenger by her seat at the highest point is 

at least half her weight. 

(a) Find the minimum speed at the top of the track. 

(b) Find the minimum speed at the lowest point of the track. 

( c) State clearly two modelling assumptions that you make. 

A Q 

D 

C 

The diagram shows a vertical section of a part of the track of a fairground ride. 

The part AB is straight and inclined at an angle of 45° to the horizontal. The 

part BCD is an arc of a circle of radius a and centre O. The point C is the lowest 

point of the circle, D is the highest point and CD is vertical. The angle BOC is 

45° so that AB is a tangent to the arc of the circle at B. 

A passenger car (which is to be modelled as a particle P of mass m) is released 

from rest at a point Q on AB at a height 3a above C. 

Given that the track is smooth 

( a) find the reaction of the track on P when it reaches C, 

(b) show that, when it is between C and D and the angle COP is 8, the reaction 

of the track on P is mg (4 + 3 cos e). 

18 A smooth wire, on which a small bead B of mass m is threaded, is formed into a 

circle of radius a and fixed in a vertical plane. The bead is projected from the 
lowest point ofthe circle with speed .j8ga. Show that, when the direction of 

motion of B has turned through an acute angle e, the square of its speed 

is 6ag + 2ag cos e. 
Find, in terms of m, g and e, the reaction of the wire on the bead. 
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19 A banked corner of a racing track can be regarded as a circle of radius r and the 

gradient of the track is such that a car travelling at speed u has no tendency to 

side slip. Find the relationship between ex. , rand u. 

Show that the coefficient of friction necessary to prevent sideslip at a 
(v 2 _u 2 )sinex.cosex. 

speed v > u must be at least 2. 2 2 2 . 
v sm ex.+u cos ex. 

20 A particle P is attached to one end of a light inextensible string of length a whose 

other end is attached to a fixed point 0. Initially the particle is in equilibrium, 

suspended from 0, at the point B and it is then projected horizontally with speed 

u from B. The particle initially moves in a circle but at a particular point of its 

path the string becomes slack and the particle then moves in a parabolic path 

which passes through B. Find the angle between the string and the upward 

vertical when the string becomes slack and also determine u. 

21 A particle is suspended from a fixed point 0 by a light inelastic string of 

length a. The particle is projected horizontally, in the vertical plane containing 

the string, with speed u and the string becomes slack when it makes an angle ex. 

with the upward vertical. Find u 2 in terms of a, g and ex.. 

22 
Given that the particle subsequently passes through 0, find the value of cos ex.. 

The diagram shows a vertical section ABC of a smooth surface. AB is horizontal 

and BC is a semicircular arc of radius a, whose centre 0 is at a distance a 

vertically above B. The surface is used in a game where a small ball P of mass 

rn is projected with speed u towards B from a point D on AB. Subsequently it 

moves along the arc BC, leaving BC at C. It then moves under gravity until it 

first hits AB at D. 

(a) Find, in terms of rn, u, g, a and e the reaction of BC on P when OP is 

inclined at an angle e to the downward vertical. 

(b) Find u so that BD 3a. 

(c) Find the smallest possible value of BD. 

State two modelling assumptions that you have made. 

23 A circular bend of radius r is banked at an angle ex. such that the maximum speed 

at which a car can travel around it without skidding is v. If the coefficient of 

friction between the wheels and the road is 1.1 tan 'A), show that this 

maximum speed is given by v 2 rg tan (ex. + 'A). 
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Chapter 5 

General Equilibrium of a Rigid Body 

After working through this chapter, you should 

• Be able to draw diagrams showing forces acting on rigid bodies including normal 

contact forces and friction. 

• Be able to solve simple problems involving a rigid body in equilibrium under 

several coplanar forces. 

5.1 Conditions for equilibrium 
If a rigid body is in equilibrium under the action of a system of coplanar forces, then 

the forces satisfy the following conditions:-

(a) the sum ofthe forces is zero, 

(b) the forces have zero moment about any point of the system. 

Equivalently, the total clockwise moment is equal to the total anticlockwise moment. 

For condition (a), it is often more convenient to resolve all the forces in two mutually 

perpendicular directions. Usually, these will be horizontal and vertical, or parallel 

and perpendicular to an incline plane. This gives us two independent equation. A 

third independent equation is obtained by taking moments about a convenient point so 

as to eliminate as many as possible of the unknown quantities that are not required. 

You can obtain two or three equations by taking moments about two or three points 

but you should remember that you can only get three independent equations. 

In problems involving frictions, when equilibrium is about to be broken by slipping, 

the friction is limiting at the point of contact at which slipping is likely to occur. If 

the body is not on the point of moving, friction is not at its maximum possible value. 

When solving problems, it is important to interpret the information given and draw a 

clear diagram. Mark on the diagram all the forces acting on the body and indicate 

clearly the direction of these forces. Sometimes it is not vital to know the direction of 

action of a particular force because a negative answer in the solution will indicate that 

the direction of the force is opposite to that indicated in the diagram. 
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Example 5.1 

A loft door AB of length lm and mass 5 kg is propped open at 600 to the horizontal by 

means of a strut BC. BC is of length 1 m and mass 2 kg. Find the thrust of the strut. 

B 

T 

c 
The first step is to draw a diagram showing all the forces. 

Tis the thrust of the strut. 

P is the contact force at the hinge; its direction is unknown. If we take moments at A, 

P will not feature in the equation and we will only have one unknown T. 

The triangle ABC is equilateral. 

Taking moments about A, 

5g x ~COS60° + 2g x (1 ±COS60') = T x Isin 60' 

llg 
which gives T 2,fj 31.12 N 

Exercises 5.1 

1. A uniform rod AB of mass 10 kg and length 2 m is freely hinged at A to a vertical 

wall. A force P is applied at B at an angle e to AB to keep the rod in 

equilibrium. When in equilibrium AB makes an angle a above the horizontal. 

Forces X and Yare the horizontal and vertical components of the reaction at the 

hinge. Calculate the magnitude of P, X and Y when 

(a) 8=90',a 0' 

(b) e = 45',a = 0' 

(c) e = 30° , a 60' 

2. A uniform rod AB of mass 5 kg and length 4 m is freely hinged at A to a vertical 

wall. A force P applied at B at an angle e to AB keeps the rod in equilibrium. 

When in equilibrium, AB makes an angle a above the horizontal. R is the 

reaction at the hinged which makes an angle ~ with the wall. Find the 

magnitude of the forces P and R and the size of angle ~ when 

(a) e 60°,a=O' 

(b) e = 60° ,a 30° 

(c) 8 = 30° ,a = -45° 
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3. A uniform rod AB of mass 8 kg has its lower end A in contact with a rough 
horizontal floor. The coefficient of friction between the rod and the floor is !l. 

A string is attached to end B and keeps the rod in equilibrium at an angle a with 

the horizontal when the string makes an angle p with the rod. Calculate the 

tension in the string, the normal reaction and the frictional force at A when 
(a) a=30·,p=90° 

(b) a = 45·,p = 60· 

(c) a = 60° ,~ = 30° 

4. A uniform horizontal rod AB of length 3 m and mass 20 kg is freely hinged at A 

to a vertical wall. The end B is attached by means of a light inextensible rope 

inclined at 30° to the horizontal to a point of the wall above A. A mass of 30 kg 

is suspended from B. Calculate the tension in the rope. 

The rope breaks when the tension exceeds 200g N. Calculate the largest distance 

from A at which an additional mass of 135 kg can be attached, to the rod AB. 

5. A uniform rod AB of length 4 m and mass 5 kg is hinged freely to a vertical wall 

at A and has a mass of 8 suspended from the end B. The rod is kept in a 

horizontal position by a light inextensible rope CD attached to the midpoint C of 

the rod and a point D on the wall 1.5 m above A. Find the tension in the rope and 

the magnitude and direction of the force at the hinge. 

6. A heavy uniform metal beam AB, 4 m long and of mass 200 kg is lifted onto a 

truck by means of a chain attached to end B of the beam. End A rests on rough 

horizontal ground. The chain passes over a pulley C fixed above the truck. The 

beam and chain are in the same vertical plane. The system is in equilibrium 

when the beam makes an angle of 25° with the ground and angle ABC is 135°. 

Find 

(a) the tension in the chain, 

(b) the magnitude and direction of the reaction between the beam and the 

ground. 

7. A uniform straight rod AB has its centre of gravity at C. The rod has mass 10 kg. 

The rod is acted upon by a force of20g N vertically upwards at end B, by a force 

of 109 N vertically downwards at end A, and by horizontal forces at Band C such 

that rod AB is in equilibrium inclined at an angle 30° to the horizontal with end B 

higher than end A. Show that the horizontal forces at B and C are equal In 

magnitude and find this magnitude. 
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5.2 Ladder problems 
These are problems involving a ladder in equilibrium with its foot on the ground and 

its top resting against a wall. The wall or the ground may be rough or smooth and the 

ground may not be horizontal nor the wall vertical. 

When a ladder rests against a smooth surface, there will only be a normal reaction at 

the point of contact perpendicular to the surface. When the surface is rough, there 

will also be a frictional force opposing motion. 

Example 5.2 

A ladder 10m long rests on rough horizontal ground against a smooth vertical wall 

and is inclined at an angle 8 to the horizontal where sin 8 = 4. The mass of the ladder 
5 

is 15 kg and its centre of mass is 4m from the lower end. A man of mass 75 kg stands 

on the ladder 8 m from the lower end. Find the friction force at the ground. 

Draw a clear diagram showing all the forces. 

o F 

P and Q are the normal contact force from the wall and the ground. F is the friction 

force at the lower end of the ladder; it acts· to the left as the ladder will have the 

tendency to slip to the right. To eliminate P and Q, take moments about X. 

F x IOsin8 = 75g x 8cos8 + 15g x 4cos8 

S b ·· . 4 3 u strtutmg sm {) = - , cos {) = , 
5 5 

F 485.1 N 

The friction force is 485.1 N. 

The remaining force on the ladder, if required, could most simply be found by 

resolving horizontally and vertically. 

Resolving horizontally 

P-F 0 

P 485.1 N. 
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Resolving vertically 

Q-7Sg-1Sg=0 

Q = 882 N 

Also, for equilibrium to be possible, the coefficient of friction between the ladder and 

the ground must not less than F , which equals O.SS. 
Q 

Sometimes, it is easier to take moments about more than one point. Remember, 

however, that there are only three independent equations. 

Example 5.3 

A uniform rod AB of length 2 m and mass S kg has its end A resting on rough ground. 

It is supported at 60° to the horizontal by a string attached to its upper end B. In the 

position of equilibrium, the string is at right angles to AB. Calculate the tension in the 

string, the friction and the normal forces at A . 

. I 
er--

I "- "-
I "T 
I "-
I 
I 
I 

p 5g 

A F 

Let the tension in the string be T N, the friction F N and the normal reaction at A to be 

PN. 

To eliminate P and F, take moments about A. 

T x 2sin 60° = Sg x lcos60° 

T = s.J3 g N. 
6 

P and F may be found by resolving horizontally and vertically. Alternatively, taking 

moments about C will eliminate T and P. 

F x 2 sec 30° = Sg x 1 cos 60° 

F = s.J3 g N. 
8 

Taking moments about D eliminates T and F. 

P x 2 sec 60° = Sg (sec 60° - 1 cos 60°) 

p=3S gN. 
8 
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Exercises 5.2 

1. A uniform ladder of mass 20 kg and length 21 m rests in limiting equilibrium with 

its upper end against a smooth vertical wall and its lower end on a rough 

horizontal floor. The coefficient of friction between the ladder and the floor is 
Il. The ladder is inclined at an angle of 75° to the horizontal. 

Calculate the normal reaction at the wall, the normal reaction and the friction 
force at the ground, and the value of Il. 

2. A lllliform ladder of mass m kg and length 21 m rests in limiting equilibrium with 

its upper end against a rough vertical wall and its lower end against a rough 

horizontal floor. The coefficient of friction between the ladder and the wall is .!.. 
5 

and that between the ladder and the floor is 1. The ladder makes an angle 8 
3 

with the floor. Calculate the normal reactions at the wall and the floor in terms of 

m,g and 8. 

3. A uniform ladder 8 m long, and of mass 30 kg rests with its top against a smooth 

vertical wall and its foot on rough ground 2 m from the wall. Find the normal 

and friction forces at the foot of the ladder. 

4. The foot of a uniform 30 kg ladder is on rough horizontal ground with its top 

resting against a smooth vertical walL The ladder is in limiting eqUilibrium and 

makes an angle of 60° with the horizontaL Find the coefficient of friction. 

If a man of mass 60 kg stands three-quarters of the way up the ladder, find the 

smallest horizontal force that needs to be applied to the foot of the ladder to keep 

it in equilibrium. 

5. One end of a uniform ladder of weight W rests on a rough wall, the other 

end rests on rough horizontal ground. When in limiting equilibrium, the ladder is 

inclined at an angle 8 to the vertical. The coefficient of friction between the 

ladder and the wall is Il and the coefficient of friction between the ladder and the 

ground is Il' . 

Show that 

tan 8 
lllll' 

6. A uniform ladder of mass 50 kg rests with its upper end in contact with a smooth 

vertical wall and its lower end in contact with smooth horizontal grolllld. The 

ladder is being prevented from slipping by a horizontal force exerted by an 

inextensible string fixed to its lower end. If the breaking tension of the string is 

12.5 g N, calculate the greatest possible inclination of the ladder to the horizontal. 
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7. A uniform ladder of mass 8 kg rests in equilibrium with its base on a smooth 

horizontal floor and its top against a smooth vertical wall. The base of the ladder 

is I m from the wall and the top of the ladder is 2 m from the floor. The ladder is 

kept in equilibrium by a light inextensible string attached to the base of the ladder 

and to a point on the wall, vertically below the top of the ladder and 1 m above 

the floor. Find the tension in the string. 

8. A uniform ladder rests in limiting equilibrium with its top end against a smooth 

vertical wall and its base on a rough horizontal floor. The coefficient of friction 
between the ladder and the floor is /l. The ladder makes an angle e with the 

floor. Show that tan e 1 
2/l 
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ANSWERS TO EXERCISES 

Ex ercises 1.1 

1 x ae 31 + be-Of 

2. x = ael + be21 

3. x e41 (acost + bsint) 

4. y ae 4x + be2x 

5. y= (a cos 8x + b sin 8x) 
4t _. 

6. x = ae 3 + be" 

7. x a cos 5t + bsin5t 

8. y = 3cos4x 

9. x = 2e21 cos 4t 

10. x = 12e-21 -7e-sl 

11. y ~e4(Jt-X) sin5x 
5 

12. x = 3e31 + 2e-2t 

13. y = e-4x (2 cos 2x + 6sin 2x) 

Exercises 1.2 

1. x= 2 + ae 31 + be21 

2. x = 2t + 3 + aesl + bel 

3. x 2+e-SI(acost+bsint) 

4. x = 3t - 4 + e -I (a cos 3t + b sin 3t) 

5. y 3x + 1 + ae-8x + be-3x 

6 1 2 b -4x . Y = -x + x + a + e . 
4 

7 3 9 21 1 -lOt 
. x= +-e +-e 

2 2 

8. x 4 + 3e-21 cos4t 

9. y=3x+4+xe-x 

10. y = 4+ 3e-2X cos4x 

Miscellaneous Exercises 1 

1. y 3x + 1 + (Acos3x + Bsin3x) 

2. y == 3 + Ae-3x + Be-4x 

k A -31 B -121 -+e + e , 
36 

3. (a) x 

(b) N 
dx 

3x y, di== 4y, 

4. (a) x = (A cos 2t + B sin 2t) 

k le -31 le 
x= - e + 

k 

36 27 108 

12N, 
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(b) dk 1 dJ -8k 41 
dt' dt ' 

k~ 0 as t ~ 0Ci 

S. p = 2 + e- I (O.S cos4t + 0.12S sin 4t) 
~ 

(i) 2, (ii) 2 O.Se 4, 
11: 

t= 
4 

6. (a) y 4x + 8 - e3x 
- 2e x 

(b) y e2x (S cos x - 11 sin x) 

(c) y (S -11x) 

7. 

1. Eo illS-1 

2. 1.61 ill 

3. x = 1 

4. 
4 

2.,)1+2t 
x 

S. S+x, S +Se l 

eX ( 2 ) 6. In --
1-2t 

7. 
t 4 

16 

8. 
-J3 

s 
2 

9. SO km 

Exercises 2.2 

1. 
S 61 23 

e +-
6 6 

1 

2. (3x + IS)] 

3. 2e 2 -2 

4. 
16t 

8t + 1 

S. 2 s, 
8 

t -ill 
') 

.) 

6. 60m 

132 



Answers to Exercises 

Exercises 2.3 
1 

1. In10s 
4 

2. 0.96 s 

3. 48 In 2 m 

4. 
250 

1000 In - m 
169 

5. 
F In4 

mk' k 

6. 3.12 ms-I, 0.91 m 

7. 1.25 tan -I 4 s 

Miscellaneous Exercises 2 

1. (a) dv = -O.lV2 10(12 V) 
dt '12V 

(b) takes an infinite time to come to rest, 
any resistance which does not vanish for v = 0 

2. (a) (i) dv _4V"+I, (ii) U t 

& ~+4nfun~ 

(b) (i) 
u 

(ii) 

3. (a) 8, (b) 6150 W, (c) 1.47 km 

4. 9.8 (e- kf -1)+ 30e-k' • For t = 2 s, v = -0.01, 
k 

5. 7.8125 s, 99.8 m 

6. (i) 1112 s, (ii) 2 m 

1.92 N 

7. (a) (i) ~U2 - 2g(x - b), (ii) stops when x 
u 2 + 2gb 
--~ and returns to earth 

2g 

(b) (i) ~U2 + 2: - 2:, (ii) returns to earth, (Hi) escapes to infinity 

9. U 2 g (1 e-2kH ) 

k 

(~ 1 10. 5t+50le10 1 

11. 6gt-36g[l-e-~1 

12. (a) (i) nj{, (ii) 3a 
(b) (i) 2n (ii) p < ~ 

3 
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Exercises 3.1 

7t S 1. 

2. 0.5 m, 0.3 m 

3. 

4. 

1 _I 
- ms 
7t 
5 
-m 
37t 

5. 5 m, 7t s 

6. 5 m, 20 ms-1 

7. 004 m 

8. 2.J5 m 
3 

63.7 Hz 

s 

9. 

10. 

11. 

0.63 ms -I to 1.57 ms- I 

0.22 s, 0.12 s 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

3sin(1~J m 

0.057 

6048 am 

12.32 am and 8.18 pm 

0.27t -I 0.27t 2 
--ms 

3 ' 9 

4.2N,3.6N 

0.06 m 
35

Hz 
7t 

20. Does not slip 

21. 9.9 x 10-4 m 

22. 2m, x 1 m 

Exercises 3.2 

1. (a) 0.13 s, (b) 0.17 s 

Answers to Exercises 

2. x = -004sin2tm, v -0.8cos2t ms-I 

3. l.13 s 

4. (a) 0.13 s, (b) 0.17 s 

5. 1.13 s 
7t 

6. (a) 16 s, (b) 0.23 s 

7. 0.2 m, 0.05 s 
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8. 0.25 s 

9. 1.10 s, 0.2m 

10. 0.13 

11. 0.77 s 

12. 0.24 ms-I, 0.16 s 

13. 1.4ms-1 

Exercises 3.3 

1. 0.52e-121 
- 0.48e-131 

2. 0.05e-41 sin12t 

3. -e -41 +0.8e-51 

4. -0.2te-51 

5. 
2rc 
-s 
3 

6. 
3rc 

20 

7. 2.53 N 

Miscellaneous Exercises 3 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

(i) 8m, (ii) 
rc 

(iii) 108fj W, (iv) 216 W -s 
18 ' 

rc d- I 2m, 
5rc 5rc _\ 

- ra s , - rad --ms 
3 6 ' 3 

e- I (A cos 2t + B sin2t), 2e-' cos2t 

(i) ~2gx, x = 0.6, t = ~ , 
19.8 

(iv) 3.28 ms -I, 0.932 

(.) 2rc 
1 s, 

3 
(ii) 0.057 m, (iii) 0.057 sin 5t, (iv) 0.16s,3.75N 

a cos ro t, (i) rc 
3ro 

(ii) 5rc ( ... ) 4b 12;' 11l , 

0.2 m, 2.96 N 

(0.28cos 7t + 0.04 sin 7t), 0.82 m 

(i) 5 N, (ii) lO(x + 0.098) N, (iv) 

(vi) string becomes slack during motion 

rc 
-s 
5 ' 

(iv) 5b 

(v) 0.433 ms- I 

(i) 0.6 sin~t, (ii) 0.5 (iii) 
. rc 1[ 

0.083 Sln-tcos-t W 
3 3 
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

21. 

22. 

24. 

25. 

26. 

Answers to Exercises 

(i) 1.568 m, 
11: 

S, 
5 

(. ) 211: 
IV - s, 

15 
(ii) 0.2 cos 2.5t (iii) 

d2x = -6.25(x - 0.4sin2t) 

(ii) 0 1 11: . m, 40 s, (iii) 0.1 sin 20t m, 2 cos 20t ms -I , (iv) 11: S, 
60 

(V) Car moves away with same speed as it collides. This takes no account of 

energy loss due to collision 
411: 

1.5 m, 12.5 hrs, 8.5 + 1.5cos-t m, 20.27 hrs, 0.754 cm per min 
25 

11: 
13 cm, 11: s, - s 

4 

~cos [5it 211:,/" 
5 y-;;' , V 5g 

2 s, .)10 m 

140 N, 1.67 ms-I 

d 2y 2k a {2k 
dt 2 + -;; y = 0, '6COSy-;;t 

J6m 
~(I+.J5) 
2 

811: 411: 
5 m, s, s 

5 15 
2g + 0.611: 2 N, 2g - 0.611: 2 N 

k 2 < 1, k = 0.16, n = 2.03 

Exercises 4.1 

l. 60.75 N 

2. 1.3 

3. 0.87 m 

4. 0.83 s 

5. 0.13 

7. 497.4 N 

8. 0.58J! 

0 9.33 ms-I /. 

10. R 3a 

136 



Answers to Exercises 

Exercises 4.2 

1. 2.3 ms-I 

2. 1705 N 

3. 0.99 m 

4. 6064N 

5. 1.65 s 

6. fih 

7. 2{3; 
1I~5g 

8. 
5mg 5mg 1 

, , -
3 12 2 

10. 
mv 2 

m[ ~ - gcosa), v 2 > gacosa mg sin a +--cota , 
a 

11. 
11 
-
7 

Exercises 4.3 

1. 451 N 

2. 12.5 ms-1 

3. 63.9° 

4. 82.8 ms-1 

5. 1.25mgsina 

6. 0.33 

7. 8.2° 

8. 0.33, 0.37 

9. 14.6° 

10. 11.9 ms-I ~ v ~ 42.7 ms-I 

Exercises 4.4 

1. J68ag 

2. Fag 
3. 5.65 ms-1 

4. 6.26 ms-1 

5. 2760 N, 1290N 

6. 1.98 ms-1 

7. flol ;::: 28(sin e + fl cos e) 
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8. 3mg sin e 
9. 

a 

3 

10. ~ag(2 + 3n) 

Miscellaneous Exercises 4 

1. 

2. (a) 

m(g - hro
2 

), If ' 
, n ~, 

2 ~g 

0.1, 90mg 

(i) 

(b) 

aT 
a+ 

mg 
(H) 

mro2 

--- mg + 3mg cos 8 , 
a 

3. 

4. mg sina - mf.ro2 sin a cosa, mgcos a + mf.ro2 sin2 a, 

5. 

7. 

8. 

0.77, 53.7° 

~61ga 
45 

2g 

5n2 

49a 

141 

9. 23.52 kN, 212 m 

10. ~ , 2../ai 
11. (i) 2.8 

12. (a) 28ag, 

(ii) 3.27 N 

(b) 19m9 

T 

13. (a) (i) smooth cylinder, no air resistance (ii) 0, (iii) No, (iv) J¥­
(b) u 2 ~ 5ag 

14. 

15. radius to bead at cos -I 8 to upward veltical 
9 

16. (a) 13.28 ms -I (b) 25.43 ms-I 

17. (a) 7mg 

18. 3mg (2 + cos e) 

20. ~ J7~g 
21. ag(2 + 3cos a), 1 

J3 

22. (a) 
mu 2 

- 2mg + 3mgcos8, 
a 

(b) ~../ai 
2 
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Exercises S.l 

1. (a) SgN, 0, SgN, (b) Sg,fiN, SgN, SgN 

(c) SgN, Sg13 N 2Sg N 
2 ' 2 

2. (a) Sg N 
13' 

Sg N 
13' 

30°, (b) Sg N 
2 ' 

Sg13 N 
2 ' 

30° 

(c) 10g,fi N, 92.14N, 113° 

3. (a) 2g13 N, 11 g, gf3N (b) 8g N 
3 ' 

71.6N, 28.4 N 

(c) 4gN, 10gN, 2gf3 N 

4. 80gN, 
1 

1- ill 
3 

S. 3SgN, 431.6 N, Sl° to the vertical 

6. (a) 890N, 61 0 to the horizontal, (b) 12S6 N 

7. 20gf3 N 

Exercises S.2 

1. 26.26 N, 196 N, 26.26 N, 0.134. 

2. 
cose cose 

10sinfh 2cose' 6cose 2sine 

3. 30gN, Sgf3 N 

4. 
1 

gJ15 N 
2E' 

6. tan -I 2 

7. 2g,fi N 
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INDEX 

Angular velocity 85 

Banked track 98 

Compl ementary function 9 
Conical pendulum 92 

Differential equation 

second order 

homogeneous 2 
inhomongeneous 8 

Energy conservation 109 
Equilibrium, 

conditions for 124 

Ladder problems 127 

Motion in horizontal circles 84 
Motion in vertical circles 108 

Particular integral 9 

Simple hannonic motion 42 
alternative definitions 47 
summary of basic fonnulae 49 
damped motion 69 
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