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PREFACE

This is the last of three books which cover between them most of the mathematical
methods required for a modular A level course in Mathematics, whatever Examination
Board the candidate is taking. Specifically, the text is based on the P3 specification of
the Welsh Joint Education Committee which was introduced in 2001.

The author has many years of experience of examining and is currently the Principal
Examiner for Modules P1-P3.
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Binomial Expansions for Rational Indices

Chapter 1

Binomial Expansions for Rational Indices

Introduction
In this chapter, the work given in P2 relating to binomial expansions for positive

integral indices is extended to the case where the index is a rational number.

1.1 Binomial expansions for positive integral indices: another look

We saw in P2, that

+---+(Z]x“ (1)
or 1+x)" =1+(’11 x+[g]x2 +(’31jx3
ot [Z}x”, (2)
!
where (nj = L, 3)
) (m—r)ir!
or equivalently, (”j = n(n—Dn=2): (n=r+1) . 4
" 123.4.(r=1yr
Example 1.1
Find (ZJ using the form (4) above.
(ZJ = 7.6.5.4 (four factors on top and bottom)
2.3.4

1
=35.



Binomial Expansions for Rational Indices

Example 1.2
Expand (a+x)°, expanding coefficients by means of the formulae above.
Then from (1) and (4):
_ _ 3.3
(a +x)6 —4° +9a5x+ 6(6 1)a4x2 + 6(6-1)(6-2)a"x
1 1.2 1.2.3
L 6(6-D(6-2)(6-3) .
1234
6(6—1)(6-2)6-3)(6-4)
+ ax
1.2.3.4.5
N 6(6-1)(6-2)(6-3)(6—-4)6-5) 4
123456

5 5.
:aé+6asx+6;a4x2+6—5£a3x3
1.2 1.2.3
6543 , , 65432

+ ax +———ax
1.2.33.4 12345
6.5432.1 ,

Ty
123456
=a®+6a’ +15a*x* +20a’ x> +15a°x* + 6ax’ + x°.

We appear to have made “heavy weather” of evaluating the coefficients; after
all, these could have been found by means of the "C, button on most
calculators. However, we believe the somewhat laboured approach will prove
beneficial in the next section,

To sum up,

2
(4 2)" =1+ nx+ 20X

L D(n-2) g
123
Lrn=Dn=2)(m=3) .
1.2.3.4

We do not consider (a + x)" at this stage.

)

1.2 Binomial expansions for rational indices

Let's consider (5) with the index n =—1.
(a) In this case the right hand side of (5) becomes

e CDEIZD
T+ (-Dx+ T

LEDEI-DEL-D) s (EDEL-DEL =2 - 3)x*
1.2.3 1.234

+...



Binomial Expansions for Rational Indices

or, on simplifying,

l—x+x> =x*+x* +-

Exercise 1.1

Find the coefficients of x°* and x°.

Using the formula (5) with n = -1, r = 5 and n = ~1, r = 6, we find the

coefficients of x* and x° are —1 and 1 respectively.

The series
l—x+x" —x’ +x* —x" +x° +---
never terminates, coefficients being 1 (for even powers) and —1 (for odd
powers).
The series is, in fact, an infinite geometric series with common ratio » = —x and

first term 1 whose sum is

1 1
1—(—x) 1+x

(b) We note also that the left hand side of (5) becomes (1+x)”
whenn = —1.

Combining (a) and (b), we deduce that
(I+x) " =l-x+x" - +x* - +x°+-,

as long as x| < 1.

the result deduced from (5) when n = —1.

It appears that the binomial expansion for (1+x)" is valid when n = -1,
as long as |x] <1. In fact, the binomial expansion for (1 +x)" is
valid when # is any rational number, whatever the value of n, as long

as |x| < 1.

Summary
It should be noted that

(a) when n is a positive integer the expansion of (1 + x)" terminates (this is

the case considered in P2);

(b) when 7 is a rational number (i.e. of the form L4 , where p and ¢ are

integers), but not a positive integer, the expansion of (1 + x)" has an
mfinite number of terms; and

(c) the expansion is valid when |x] < 1.



Binomial Expansions for Rational Indices

Example 1.3

Find the first four terms of the binomial expansions for
@  (+x)

)  (+x)”

© (d-x7

@ (+20)7

and state for which values of x the expansions are valid.

(a) For (1+ x)%, the binomial expansion is valid if |x| < 1.
. 1. .
Then setting »n = 5 in (5), we obtain
1)1
o ala
1+x)? =1 +[5]x+—x2

Lhle)

1.2.3

1 1
=l+—x——x"+—x" 4+,
8 16

for |x| < 1.

(b) Here n = —% and the expansion is again valid for |x| < 1.

Then (5) becomes

l+x) T =1+ -2 |x
(I+x) [2 12

),

+...
1.2.3
3 15, 35,
=l-—x+—x" ——x +
8 16
() Here n = -2 but we have 1—-x instead of 1 + x. We write n = -2 and

replace x by —x in (5). Before expanding we note that the expansion is
valid for |—x| <1, Le.. for |x] < 1.
Then (1-x)7 =14 (=2)(-x)+ %(—x)2
L (2 -D(2-2)
1.2.3
=14 2x+3x> +4x +--

(—x)* -
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Example 1.5
I1+2x

1-x

Expand as a series of ascending powers of x up to and including the
term in x”. State the range of validity of the expansion.

1+ 2x
1—x

2]
Now (1+ 2x)% =1+ [%j@x) + —2-—;22——{2)()2 o

=(1+2x0) (1-2)".

Now

= 1+x__£__‘\_..
2

-4 1 - 2
and l—x) * =14+ —=l(-x)+ -x)" +
1-x) ( 2]( ) " (=x)
x  3x°
=l4+—+—a-
2 8

1+2x

Then — (14207 (1=x)"

The range of validity for (1 + 2x)% is

2x] <1 or |x| < l
2

The range of validity for (1 - x)’% is

Ixj < 1.

L [1+2x .
Then the range of validity for 1+ * must satisfy both the above
~x

requirements and is therefore jx|<% .



Binomial Expansions for Rational Indices

(d) Here n = —% and we replace x by 2x in the expansion (5).

. : , 1
The expansion is valid for |2x| <1, i.e. for |x| <5.

Clexdax 22
2 2

1t should be noted that (5) relates to (1+ x)" and not (a+x)" (a #1).

. x n
To expand (a+ x)" we first write (a +x)" as a” [1 + —} and then we
a

use (5) with x replaced by X
a

Example 1.4
Find the expansion of (2+x)™ as far as the term in x’. State the range of x

for which the expansion is valid.

-3
Now(2+xy3:2*[1+§]

:%P+F$§+egey4{3j+(%X4—D&&4{?]+“}

1.2 2 1.2.3 2
1 3x 3x? 5x%°

=—[1-=+ —
8 2 2 4
1 3x 3x* 5x°

e s
g 16 16 32

-3
The expansion is valid when the expansion of (1+§J is valid, i.e. when
\
x
&5 <1 or when |x| <2.

Sometimes it is possible to express a compound function by first expressing
the function in terms of more manageable functions. In such cases, care must
be taken in expressing the range of valdity of the expansion of the compound

function.
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Example 1.6

1

. . x )’ . .
Write down the expansion of [1 + gl as a series of ascending powers of x up

to and including the term in x*. State the range of validity of the expansion.

Use the expansion to show that
551

37z

228

o o3 QI

2

:1+i_L+...’ (1)
24 576
provided % <1, le. x| <8.

Now let's write x = —1 in (1), noting that this value of x is within the range of

validity for the expansion. Then

NEARED
B 576
551 ) 551 551

so that 3\/7:8%><—: ="
576 576 288

Exercises 1.2

1.

Obtain the first four terms in the binomial expansion of each of the following,

and state the range of values of x for which each is valid.

@ (-4 () (1+207 (0 1_13

@  G+x)7 @ @+07 (O  (O-40)"

Obtain the expansions up to the term in x° of the following, and state the range

of values of x for which each is valid.

@ (1-0Vitx (b) % © —”(ti;

1

@ (1-x)(1-2x)
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|
1\2
. . : 2 : :
Find the first four terms in the expansion of (x + x—7] in descending powers

of x.

1+3x

- X

Expand as a series of ascending powers of x up to and including the

term in x°. By substituting x = m in the expansion, find an approximation for

V13, giving your answer correct to two decimal places.

1-2x
Expand in ascending powers of x as far as the term in x*. The
V1+2x
equation
1-2x - 29x

N1+ 2x 10

has a small positive root (amongst others). Use your expansion to find an

approximate value of the root.

When (1 +ax)" is expanded in ascending powers of x the first three terms of

the expansion are 1—2x + 7x”. Find the values of 2 and 7.

Find a suitable binomial expansion to find +v0.99 correct to four decimal

places.

. . x ) . .
Write down the expansion of [] + 5] as a series of ascending powers of x up

to and including the term in x°. State the range of values of x for which the
expansion 1s valid.

Use your expansion to show that

611
MLy

216
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Chapter 2

Introduction to
Rational Functions, Partial Fractions

In this chapter we consider briefly functions whose denominators and numerators are
both polynomials. In certain cases, we are able to express such functions in simpler

form.

2.1 Rational functions

A rational function of x is a function of the form g’ where P(x) and J(x) are

polynomials in x.

Example 2.1
2x+5 2x7 =3x7 +x+2
(@) — () >
3x"+2x+1 x +2x+5
x =x*+1 ) )
(c) ————— are rational functions
x'+x +4x+5
but
sinx+x+3 X +2x~x+4
@ —F— & —
4x° +2x+1 e +3x+2

are not rational functions.

The rational functions (a), (b) and (c¢) in Example 2.1 differ in an important
respect.

In (a) the degree of the numerator (1) is less than the degree of the
denominator (2).

In (b) the degree of the numerator (3) is greater than the degree of the
denominator (2).

In (c) the degrees of the numerator and denominator are equal (7).

In this chapter we shall be mainly concerned with rational functions of type
(a), where the degree of the numerator in less than that of the denominator.
Problems involving rational functions of type (b) and (c) can always be

converted into problems involving rational functions of type (a), by division.
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Introduction to Rational Functions, Partial Fractions

Example 2.2

For *————w———x} +73x2 F2x=5 , the degree of the numerator is greater than the degree
x —4x+3
of the denominator.
We divide out as follows.
x+7
x° —4x+3)x +3x" +2x-5
x* —4x” +3x
Tx* ~x-5
7x* —28x+21
27x-26

We terminate the division when the degree of the remainder (1) is less than the

degree of the denominator (2).

X +3x*+2x-5 27x —26
—_—— =X+t

Then . . .
x"—4x+3 x*—4x+3

The rational function on the right hand side is now of type (a). Rational
functions of type (a) are said to be proper fractions. Other types of rational

functions are said to be improper fractions.

In Example 2.2 we expressed an improper fraction as a polynomial together

with a proper fraction. This process is the subject of the following exercises.

Exercises 2.1

Express, by means of division, each of the following improper fractions as a

polynomial (or constant) and a proper fraction.

2% =3xT +x+2 xt=3x? + 2x+1
(a) 2 (b) 3 2
x +2x+1 x +3x°+2
2x* =3x7 +x+1 12x* —dx® +12x° =7
() “HF——F (d)

X Hxi—x-=2 4x° = 3x+2

In the next section we show that sometimes improper fractions can be

expressed more simply in terms of other fractions.

Partial fractions
As mentioned earlier, we consider proper fractions. Let's start by considering

how we combine fractions involving polynomial denominators.

10



Introduction to Rational Functions, Partial Fractions

Example 2.3

+
x+2 2x-5

as one fraction.

Express

We add the fractions in the same way as we add number fractions.

3 N 4 3(2x-5+4(x+2)
x+2 2x-5  (x+2)(2x-5)
_ 6x—15+4x+8 _ 10x-7

T (x+2)(2x-5)  (x+2)(2x-5)

Note in passing that there is nothing to be gained by multiplying out the
bottom factors if you are not asked to do so.
It is often useful to write a complicated proper fraction in terms of simpler or

so-called partial fractions. Thus in the above case, we write
10x -7 _ 3 N 4
(x+2)(2x-5) x+2 2x-5

The = sign indicates that the relationship is an identity which holds for all

values of x.

Example 2.4

, 2x+1 . . .
Write — ———— interms of partial fractions.
x"-x-6

Note first that the denominator x2 — x — 6 may be factorised as (x + 2)(x — 3).

2x+1 A B
= +

= , Q) These choice
x2 —x-06 x+2 x-3

of fractions will
become clear.

Let's write
where A and B are constants to be determined.

First, we clear the fractions by multiplying (1) throughout by x2 — x — 6 or
(x+2)(x-3).
Then 2x+1 = A(x—3)+ B(x +2). (2)

This is an identity, being true for all values of x.

Let's substitute particular values of x to find values for
Aand B.

Which values of x shall we use?

Letstry x=~2and x = 3 in (2).

A
note ~=— becomes
x+2 ©

4 -
A+ 2E-3)

i B_
and similarly for -7

x==2 The choice of x = -2
(2) becomes 2(-2)+ 1=A(-2-3)+ B(-2+2), eliminates B and
enables us to find
' -3 =-54 the value of 4.
and A4 = é
5

11



Introduction to Rational Functions, Partial Fractions

x=3

(2) becomes 2(3)+1 = A(3-3)+B(3+2)
7 5B sothatB=%.

il

Substitution for 4 and B 1n (1) then gives
2x+1 3 7

= + .
X —x—-6  S(x+2) 5(x-3)

In Example 2.4, the factors x + 2, x — 3 were linear polynomials, i.e. of degree
one in x. The constants 4 and B in (1) were of degree one less than the
denominator. This illustrates a general rule in partial fractions: in partial
fractions the degree of the numerator (top) is one less than the degree of the
bottom (denominator).

The calculation of the constants 4 and B in Example 2.4, where the
denominator was a product of linear factors, can be streamlined. The shorter

method is known as the 'cover-up rule'.

Return to Example 2.4

2x+1 A4 N B
(x+2)(x-3) x+2 x-3°

Given

we can find A and B as follows.

To find A, which relates to the (x + 2) factor in the denominator:

. . ) 2
(a) We cover up the (x + 2) factor in the original fraction B ,
(x+2)(x-3)

(b) substitute the value of x given by x + 2 =0, 1.e. x = -2 into what is left

uncovered, 1.e. into +31) . The result is the value of A.

X —
Then A4 = gﬂﬂ = ——4+—l = —2 = z, as before.
-2-3 -5 5

Similarly, to find B we cover up x ~ 3 and substitute x = 3

(from x -3 = 0) into what is left uncovered.

23)+1 7

Then B = = —,as before.
(3+2) 5

Exercise 2.2
Use (a) the method of Example 2.4,
(b) the ‘cover-up’ rule

to find the constants 4 and B in the following:
5-8x A B

= + .
Cx+D(2x+3) 2x+1 2x+3

12
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N.B. The cover-up rule is only used when there are linear factors in the

denominator, none of which are repeated.

The procedure to be adopted when a linear factor is repeated is demonstrated

in the next example.

Example 2.5

3x7 +4x+1 . . .
Express —————— in terms of partial {ractions.

(x-2)"(x+2)
We note that (x—2)° is a repeated linear factor and we allocate two constants

to that factor as follows:

3x° +4x+1 A B C ..
= + e (1) = indicates
(x=2)(x+2) x-2 (x-2)° x+2 an identity

In general, the number of constants to be determined is equal to the degree of
the original numerator. Here, (x—~2)*(x+2)is of degree 3 so we require 3

constants.

Clear the fractions by multiplying by (x — 2)2(x + 2). Do not expand the
s34 dAx 4 1= A(x = 2)(x+2) + Bx+2)+ Cx~2)2. (2) terms in brackets.
There are some obvious choices for x.

x=—2 {(eliminate 4 and B)
" 3(=2)2+ 4(=2)+ 1= A(0)+ B(0) + C(~ 2 — 2)2
12-8+1 = C(—4)2 = 16C
5
- =

il

x =2 (eliminate 4 and C)
322 +4(2)+ 1 = A(0)+ B(2 +2) + C(0).
21

- B ==
4

il

No further convenient choice of numerical value of x exists. We may choose

x = 0 or equate coefficients in the left and right hand sides.

13
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x=0in (2) Equate the values of x2 in (2)
302 +4(0)+1 = A=2)(2) +B(2) + C(-2)* | L.H.S.
o 1 =—-44+2B+4C 3x2 = Ax?2+ Cx2
so 44 = 2B+4C—-1 LA =3-C
- 2] d 2 3-8
4 16 16 16
_A2+5-4 43 We prefer this method but clearly
03 4 4 you use the method which is the
= T more comfortable for you.
3x% +4x+1 43 21 5

Thus

il

(-2 (x+2)  16(x-2)  a(x-2)7  16(x+2)

For convenience the decomposition into partial fractions is summarised here.

Form of partial fractions
mx +n A B

= +
(ax+b)(ex+d) ax+b cx+d

Joc? +mx +n 4 B C
(ax+/b)(cx+d)2 ax+b cx+d (cx+d)2

I

Partial fractions are sometimes used in integration of rational functions, as will
be shown in Chapter 8. At present, we consider the use of partial fractions in

other situatjons.

Example 2.6
(a) Express M in terms of partial fractions.

(x=D(x+2)

2
(b) Given that y = M, find the value of 4 when x = 2.
{(x-D{x+2) dx

’ C

@ Let 5x74+13x+9 A4 . B

= + .
(x-D(x+2)> x-1 x+2 (x+2)
Clear the fractions by multiplying by (x —1)(x +2)*.
S5 +13x+9= A(x+2) + B(x—1D(x+2)+ C(x—-1).

Letx=1 S 5+13+9 = A(1+2)* + B(0) + C(0).
. 27=94.
S A=3.

14
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Letx=-2 5(-2)° +13(=2)+9 = A(0)+ B(0) + C(-2—1)

.. 3=-3C
so that C=-1.
Equate coefficients of x°
=4 +B,
. 3 3 You may
since A=3,B=2. wish to
write x = 0.
o 5x° +13x+9 3 2 1

TG+ (oD (x+2) (x+2)
(b) To find %, we differentiate the partial fraction representation of y,

3 2 2

Then 2= - ot 3
dx (x-1)" (x+2) (x+2)
3 32 N 2
Q-1 (2+2?° (2+2)
=3 i + _2_
16 64
9
32
Example 2.7
(a) Express _ O¥dx in terms of partial fractions.
(1+2x)(1-x)
4 .
(b) Fxpand 5+—x in ascending powers of x

(1+2x)(1—x)
as far as the term in x°.

5+4x A B
et + .
(1+2x)(1—-x) l +2x 1-x

(a)

By the ‘cover-up rule’,

5+4(—) 3_2
1-(-5H 2

Similarly,
5+ 4(1) 9
1+ 2(1) 3

15
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L St4x 23
C+20)(1-x) 1+2x 1-x

S+4x _ 2 N 3
(1+2x)(1-x) 1+2x l-x
=2(1+2x)" +3(1-x)""
=2(1-2x+4x> —8x" +--)
30+ x+xP +x7 +)
=24+3+x(-4+3)
+x2@+3)+x (~16+3)+--

=5—x+11x" —13x" +---

(b)

Exercises 2.3

Express the following in partial fractions:

(i) 2x+3 (ii) x+7
(x+2)(x-3) (x+3)x+5)

2x—1 ) 3x-1

(111) xz 4 (IV) m

2 . 1

™ (x-1)°(x~2) 1) (1-2x)(1-3x)

(vil) 5x% +6x+ 77 (vii) 3x+ 17
(x—-D(x+2) (x+1)°

Find a, b, ¢ where
3x7 +2x+1 bx+c
- =gt —
(x=D(x+2) (x=1D(x+2)

and express the fraction on the right hand side in terms of partial fractions.

3x? +2x+1 . .
Express th in terms of partial fractions.
x(Bx-1)"
Hence differentiate M
x(3x-1)"
4x* —2x+2 bx +c

, giving the values of ¢, b and c.

as a+
(x+2)(x-3) (x+2)(x-13)

Express the last fraction in terms of partial fractions.

16
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4x* =2x+2

Hence, or otherwise, differentiate .
(x+2)(x-3)

(a) Expan in terms of partial fractions.

g
(1+2x)(3-x)

(b) Expan as a series of ascending powers of x as far as the

d—"
(1+2x)3-x)
term in x’, giving the range of values of x for which the expansion is

valid.

Express —%izx——— in terms of partial fractions. Hence expand the function
2~x)"(4+x)

in a series of ascending powers of x as far as the term in x’. For which range of

values of x is the expansion valid?



Trigonometry I. More Functions and Identities

Chapter 3

Trigonometry I:
More Functions and Identities

The trigonometric functions sin, cos, tan and the identity sin™ 68 +cos® =1 were

considered in P1. In this chapter, we consider:

(a) the reciprocal trigonometric functions cosec, sec and cot, or to give them their

full names, cosecant, secant and cotangent;
(b) two additional identities;

(©) some inverse trigonometric functions.

3.1 The reciprocal trigonometric functions

Whilst most work in trigonometry 1s concermned with sin, cos and tan it is
useful to be aware of cosec, sec and cot, and their properties.

We define the reciprocal functions by

1
cosec = ——,
sin® Note that cosec
1 is the reciprocal
secf=——, of cos, not of
cos® sin.
1 cos®

and cotf = =—.
tan® sin®

18
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4x* —2x+2

Hence, or otherwise, differentiate ———
(x+2)(x-3)

(a) Expan in terms of partial fractions.

a—_r
(I+2x)(3—-x)

g
(1+2x)(3-x)

term in x°, giving the range of values of x for which the expansion is

(b) Expan as a series of ascending powers of x as far as the

valid.

2+ x° . . . .
Express —————— in terms of partial fractions. Hence expand the function

(2-x)°(4+x)
in a series of ascending powers of x as far as the term in x*. For which range of

values of x is the expansion valid?

17
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Chapter 3

Trigonometry I:
More Functions and Identities

The trigonometric functions sin, cos, tan and the identity sin™0+cos’ =1 were

considered in P1. In this chapter, we consider:

(a) the reciprocal trigonometric functions cosec, sec and cot, or to give them their

full names, cosecant, secant and cotangent;
(b) two additional identities;

(©) some inverse trigonometric functions.

3.1 The reciprocal trigonometric functions

Whilst most work in trigonometry is concerned with sin, cos and tan it is
useful to be aware of cosec, sec and cot, and their properties.

We define the reciprocal functions by

cosecO = ——,
sin 6 Note that cosec
is the reciprocal
secO = , of cos, not of
cosB sin.
and coto = I _cosd

tan® sin@

18



Trigonometry I: More Functions and Identities

The graphs of the reciprocals are easily produced after consideration of the

graphs for sin, cos and tan.

y =sin 6 and vy = cosec 8

rSinG

Cosec 6

It is observed that sin 6 = 0 when 0 = krn, where k is an integer. At these

values of 8, cosec 0 is undefined and cosec 6 — + o0 or — 0 as 6 — k.

Another important difference between sin and cosec relates to their ranges: the
range of sin is [-1, 1]; in contrast, the range of cosec is (— o0, —1] U [1, ), i.e.

cosec cannot take values in the range (-1, 1).

Both sin and cosec are periodic with period 2.

19
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y=cosBand y =secB

Cos 0
! [ | | [
| | : | | I
| | | | | | |
| | | | I | |
1______:__ o _1_ - | -4 L ____
| | | | | |
| J
A [ [ %\V/A R I
i P K A I DA I N R R R
| I I | I I |
| | | | | | |
| [
| |
| |
| |
| |
| I
< S
| [
| |
} — 0
| |
N A
| |
[ I
| |
| |
| |

The graph for y = secO may be obtained from the graph of y = cosec seen

. . T . L
previously by means of a translation 5 1n the negative 0 direction.

Thus the features of the y = cosecO and y = secB graphs are broadly the same

except for details relating to their positions on the 0 axis.

Thus, sec6 is undefined at 6 = (2k + l)g where £ is an integer;

and sech —> +coor—wasf —» (2k+1)g.
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As with cosec, the range of sec is (-0, —1] W [1, o) and thus sec cannot take

values in the range (-1, 1). Also, sec is periodic with period 27.

y=tanOand y =cot 6

From the graphs, it is apparent that whilst tan is discontinuous at

0=02k+ D%’ where k is an integer, cot is discontinuous at § = k. The range

of cot is (—0, 0).

As with cosec and sec, the cot function is periodic although in contrast with

those other functions the period is 7.
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As mentioned previously, the sin, cos, tan functions are most frequently used

in problems; because, for instance, any problem involving cosec 6 may be
1

sin©

converted into a problem involving sin 6 by writing cosec 0 =

However, the reciprocal functions are important, mainly because of their

appearance in two trigonometric identities.

Two more trigonometric identities

In P1 we showed that sin’ 0 + cos’ 6 = 1 for any angle 0. Starting with this

1dentity, we are able to derive two further identities.
Dividing sin* 8 + cos” 8 = 1 by cos’ 8, we have

sin’ 0 cosze_ 1

c0s’0 cos’O cos
sin@]z 1 ]2
+1=
[cose cosH

tan’B+1=sec’ 6.

or

Similarly, dividing sin’ © + cos’ 6 = 1 by sin’ 0, we obtain

sin”0 cos’0 1

sin’0  sin’0 sin’O
cosf)’ 1Y

S+ — -
[sm@} [sm@]

1+ cot? 6 =cosec’6 .

or

Example 3.1
Find all the values of © between 0° and 360° satisfying
sec’ O =tan 0 + 3.

Now sec’ 8 =1+tan’ 0,
as was shown above.
Then 1 +tan°0 =tan 6 + 3
or tan’0 —tan® -2 =0
(tan®—2) (tan6 + 1) =0.
o tan 6 =2 or —1.
Then 0 = 63.4°,243.4° 135°, 315°.
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Example 3.2

Find all the values of § between 0° and 360° satisfying

2 cot> 6 —4 = cosec 6.

Now 1 + cot’ O = cosec’ 0
so that 2(cosec’ 0 — 1) —4 = cosec 0.
2 cosec’ © — cosec O — 6= 0.
(2 cosec B+ 3) (cosec 68 -2) =0

Then cosec O = —% or 2. (1)

It is easier to work in terms of sin 6.

. 1 . 2 1
Then since cosec 6 = ——, we have from (1), sin6 =—-— or —.
sin 3 2

06 =1221.8° 318.2°, 30°, 150°.
Example 3.3

Find Jtanzxdx.

Now from P2, Jseczxdx =tan x+ C, as may be checked by differentiation.

Now since 1 + tan’x = sec’x,

Previously,
tan”xdx (sec® x —1)dx our angle was 6, but
the result holds

for any angle.

= tanx —x + C.

Exercises 3.1
You may need to use the factor theorem in some of the following questions.

Find all the values of x between 0° and 180° in the following
(a)  sec’x+ 1 =3tanx (b)  cot’x - 1 = cosecx

(c)  tan’x +4 =sec’x+ 3 tanx.

Find all the values of 8 between 0° and 360° in the following
4 +tan’ 0 = sec O (7 — sec 0).
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Find all the values of 0 between 0° and 360° satisfying
(a) tan©+2cotB=3

(b) 4sin 6 + cosec 6 =4

(c)  4cot’8+ 39 =24 cosec 0.

Find the values of 6 between 0° and 180° satisfying
11 + tan’ 20 = 7sec 20.

Find all the values of 6 between 0° and 360° satisfying
2tan’B=sec’ 0+ 13 tan O + 5.

Show that

1+sinx cosx
+ =2secx.

cosx 1+sinx

Find all values of x between 0° and 360° satisfying
l+sinx L _cosx 4

cosx l+sinx .3

Integrate tan® 2x with respect to x.

. COS X
Given that cot x =

S x

, show that

d 2
—(cotx) = —cosec™x.
dx

Find (a) Jcosecz2xdx

(b) Jcotz 2xdx

Differentiate cosec x = with respect to x, expressing your answer in

sin x

terms of cosec x and cot x.

(a) Differentiate sec x with respect to x giving your answer in terms

of sec x and tan x.

(b) Show that %[ln(secx +tanx)]=secx.
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Inverse trigonometric functions

Inverse functions in general were considered in P2. It was seen there that for a
given function to possess an inverse, the function must be one-one. The
requirement of one-oneness necessitates some modification of the sin, cos, tan
functions when we wish to find inverse furnictions in those cases.

sin”'x

The graph of y = sin x for x € (—w, ®) is as shown where x is measured in

radians.

It is clear from the graph that the sine function f(x) = sin x is
not one —one. In other words there is no unique value x
corresponding to a given valie of sin x.

Thus f(x) = sin x does not have an inverse.
) . TR .
We restrict the domain to — E’E and consider

|

>

f¥(x) = sinx forx e {—

ol a
A

We obtain the following graph for y = f*(x).

y Note that we
4 use radian measure

l_.l._

in this discussion,
not degrees.

S
v
=

25
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[t’s easy to see that f* is one—one and therefore has an inverse. We define the

inverse of
f*(x) =sinx X € —E,E
2°2
tobe f*l(x) =sinlx xe[-1,1].
The graph of y=sin~! x is as shown.
- “_y This graph is
2 ) (= sin~1 x) found by reflecting
y=sinx,x € —[E,E:I
- 4 x 22
-1 0 1 in the line y = x.
-z
2T

Note in passing that sin~! x is an increasing function over its domain
T T
[ﬂ—a], so that for

The graph climbs
y=sin!x, to the right.

COS_] X

The graph of y = cos x for x € (— o, ) is as shown.

x
N SN
T T — >y
on 3 -n jm T\ T 3n 2'TT 3n
2 2 2 2
-1

As with sin x, the function f(x) = cos x is not one-one but a one-one function
may be constructed by restricting the domain. Thus we define

*(x) = cosx for x € [0, ],

26
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the graph being shown below.

0 A =
2

The function f* has an inverse function given by f*~1(x) = cos~! x as shown

below.
Ay
L = cos ! x)
2 \
— > X
10 i

Note in passing that cos™! x is a decreasing function over its domain (0, ©) so

that for
& <. The graph falls
dx to the right.

The graph of y = tan x for x € (— o, «) is shown below.

tan—1 x

Yy

w
a

|
w
|
a
{

ol
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As before, the function f{x) = tan x is not one-one but a one-one function may

be constructed by restricting the domain. Thus we define

f*(x) = tanx for x —E,E ,
22
the graph being shown below.
| Y A |
| I
| |
| |
| |
| |
| |
| |
| |
I |
| |
| [ R
_T 0 T » X
21 2!
I
| |
| |
| |
| |
| I
| |
| |
I |
1 1
The function f* has an inverse given by
f-1(x)= tan~lx x € (— o, ).
The graph of y = tan~1 x is shown below.
A Y
_________ 1
2 (y=tan"lx)
> X
0
_________ L
2
Beware In general,
distinguish
. _1 «
Do not confuse sin=' x with o between £-1(x)
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Example 3.4
Find sin—1(0.6148) and ————— ! .
sin(0.6148)
.. ) Press inverse
Ensure that your calculator is in radian mode. or shift key
Then sin~1(0.6148) = 0.6621, followed by

sin key.

correct to four decimal places, which is equivalent to
sin (0.6621) ~ 0.6148.

Also _1— = 1.7337, correct to four decimal places.
sin{0.6148)

Exercises 3.2

1. Find sin—1 1 , cos~! 1 , tan-1 1 .
4 5 8

V3

2. Show that 2 cos-1| X2 | = &
2 3

You don't need
your calculator

. 1 1 b8
3. Show that sin—!| — | + cos—l[—] = =,
(\/5 j 2, 2

4. Show that sin~! [?] +sin~1(1) = =

5. Show that 2 tan—l[%} = tan™ {27—4}

We return to inverse trigonometric functions in Chapter 5, specifically showing how

they are differentiated.
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Chapter 4

Trigonometry II:
Compound Angles and Double Angles

In this chapter, we consider identities relating to sin (4 + B), cos (4 + B) and
tan (4 + B), and the particular forms of those identities when 4 = B = x, (say).

4.1 Compound angles

Given the values of 4 and B the values of sin A4, cos 4, sin B, cos B and the
other trigonometric functions may be found by means of an appropriate
calculator. How does the value of sin (4 + B), say, depend upon sin A4, cos A4,

sin B, cos B? This section is concerned with exploring this dependence.

The addition formula
We derive formulae for cos (4 + B) and sin (4 + B),

where both the angles 4 and B are acute.

Do not assume that
sin (4+B) = sin A + sin B. X

You will not be
asked to produce
this in an
examination.

Let’s consider the diagram shown where the triangles POQ, QOR are right-
angled. The dotted lines are construction lines and SPO = A.

Then  sin(A+B)= LN _N5+SP
OoP oOP

_RQ+SP
OP
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_RQ 00 SP PQ
00 orP PQ OP

=gsinA4 cos B + cos 4 sinB.

Exercise 4.1

By starting with
cos(A+B)= oN
OP

and writing ON = OR — NR, show that
cos(A+ B)=cos Acos B —sin 4sin B.

The results derived above are important and are therefore highlighted here.

sin(A4 + B) = sin Acos B + cos Asin B, (a)
Rules 1

cos(4+ B) =cosAcos B —sin 4sin 5. (b)

Note in passing the occurrence of the negative sign in Rule I(b): it is tempting

to assume that
cos{A+ B) = cos Acos B +sin Asin B X

Similar results apply for sin(4—B) and cos(4—B). They may be derived from
those given in Rules I by replacing B by -B and noting that

sin(—B) = —sin B,

cos(—B) =cos B.

We obtain immediately from Rules I:

sin(A — B) = sin Acos B —cos Asin B, (2)
Rules T

cos(4~—B) =cos Acos B +sin Asin B. (b)

Two further identities may be deduced from Rules I.
sin{ 4 + B)

cos(A+ B)
_ sinAcosB+cosAsinB

" cosAcosB - sin Asin B

sin AcosB cosAdsinB

definition of tan

Now tan{(4 + B)

division of
numerator and
denominator by
cos A cos B

_ cosAdcosB cosAdcosB
cosAcosB sinAdsinB

cosAcosB cosAcosB
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sind sinB
_cosAd cosB _ tan A +tan B
sind sinB l-tanAtanB’

1-

cos A cosB
tan 4 +tan B (a) Reolace B by —B
tan(A +B) = —MM— P. Yy
( ) l—tan Atan B Rules III and note that

tan(—B) = tan B.

tan A —tan B (b)

and | tan(4-B) = — ——.
l+tanA4tan B

Rules T — ITT were deduced for the case of 4 and B being acute. You are asked

to assume that they hold for all values of 4 and B.

Example 4.1
Find, without using a calculator, the values of sin 75°, cos 165° and tan 15°,

leaving your answers in surd form.

Now sin 30° = l, cos 30° = —3, tan 30° = L,
2 2 V3
sin 60° = ? cos 60° = % tan 60° = /3,
sin 120° = ﬁ, cos 120° = - l,
2 2
and  sin 45° = cos 45° = L, tan 45° =1
V2

Then sin 75°= sin(45° + 30°)
= sin 45° cos 30° + cos 45° sin 30°
_ (s ;(z}
202 ) L2
2
= —1—(«E+1)=£(ﬁ+1).
242 4
cos 165° = cos(120° + 45°)
= cos 120°cos 45° — sin 120°sin 45°
. _l(Lj_ﬁ(Lj 2,5,
2(V2) 22 4
tan 15° = tan(45° — 30°)
tan45°—tan30°

1+ tan45°tan30°

__1
-7

1
l+\/5
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— V3-1 . multiplication\
¥

Example 4.2
. 4 12
IfsinAd= 3 and cos B = 5 where 90° < 4 < 180°, and 0° < B < 90°, find,

without using the sin, cos buttons on your calculator, the value of sin(4 + B).

Now sin(4 + B) = sin 4 cos B + cos A4 sin B.
We require the values of cos A4 and sin B.

Now sind = % and sin2 A4 +cos24=1.
Then cos2A =1-sin2 4
N CA N ()
5 25 25
cosA = S = i—é, cos< 0ty
25 5 A
x
Now 90° <4 <180°socosA<0. 0
cos A = —E.
5
Similarly, sin2B = 1—-cos?B

_ 2

169
sinB = % 25 = ii
169 13

Since 0° < B <90°, sinB>0
and .. sinB = —.
13

Thus sin{4 + B)

i

sin A cos B+ cos 4 sin B

4 12 { 3) 5
= _x__+ —_—— )(,_

5 13 L 5) 13
_ 48 1533

65 65 65
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Example 4.3
Find the value of tan x if
2 sin(x — 45°) = cos(x + 45°).

We expand the left and right hand sides using
Rules [I{a) and I(b).
2(sin x cos 45° — cos x sin 45°)

= ¢0s x cos 45° — sin x sin 45°.

-/

Now sin 45° = cos 45° = L and therefore

NG

1
— may be cancelled throughout.

NG

by multiplication
by ) throughout.

2sinx—2cosx = cosx—sinx

3sinx = 3cosx

sinx

so that =tanx = 1.

COosSXx

Example 4.4
tan 70°—tan10°

1+tan70°tan10°

Find, without using your calculator, the value of

From Rules 111(b),

tan(4 — B) = tan A ~tan B

l+tan Atan B
If 4=70° B =10° we have

tan70°—tan10°
1+tan70°tan10°

tan(70° — 10°)

tan 60°

V3.

Il

I

Exercises 4.2
Simplify the following without the use of a calculator.

(i)  cos 10° cos 20° — sin 20° sin 10°

(i)  sin 40° cos20° + cos 40° sin 20°

(i) cos O cos 3¢ —sin O sin 3¢

(iv) sin24 cosA —cos2A4 sin4

(v) cos(4+ B)cosA+sin(4 + B) sin 4

(vi) sin (4 +2B) cos 2B — cos(4 + 2B) sin 2B

(vil) sin 60° cos 30° + cos 60° sin 30°
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Do not use the trigonometric or inverse trigonometric function buttons on your

calculator to evaluate the following.

(i) Ifsind= % and A is acute, use Rules I(a) to find

sin{4 + A) = sin 24 and cos(4 + A) = cos 24.

.. . 4 . 24
(11) IfsinA=— andsinB= s and 4 and B are acute,

find the value of tan(4 + B).

(i11) If tan(x + 45°) tan x = 3 find the possible values of tan x.

: o 3 1.
(iv) Simplify and hence evaluate 700575‘3 + Esm 75°

V3+1
1-+3

(v) Iftanx= find the value of x given that 90° < x < 180°.

Simplify sin(4 + B) + sin(4 — B). Hence find all values of x between 0° and
1

5

Write down the expansion for tan(6 + 0). Hence find an expression for tan 20

360° satisfying sin(x + 60°) + sin(x — 60°) =

in terms of tan 0.

Solve the equations for values of x between 0° and 360°, using your calculator

whenever necessary.
(i) 2cosx = sin(x + 60°)
(ii) sin (x +45°) =sinx

i 1
(iii) sin(x +30°) = ECOS X

(iv) 4 cos(x+ 10°) =3 sin (x — 10°).

Double angle formulae
For convenience we recap Rules I — 1T given in section 4.1.

sin (4 +B) = sinA4 cos B +cosAsinB, (a) } Rules T
cos {4+ B) = cosAcos B—sinA4sin B, (b)

sin{4d - B) = sinA cos B—cos A4 sinB, (¢) } Rules II

cos(A4—B) = cos A cos B+sinA4sin B, (d)
tan A +tan B

tan (4 +B) = —nArtans (e)
l-tan Atan B Rules III
tan A —tan B

tan(4 - B) = —————.

( ) 1+tan Atan B ®
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Let’s write 4= B = xin(a), (b), (¢).

Then (a) becomes

sin 2x = (sin x)(cos x) + (cos x)(sin x) = 2 sin x cos x.

Similarly, (b) and (¢) become

cos 2x = (cos x)(cos x) — (sin x)(sin x) = cos? x — sin?x,

tan x + tan x 2tanx
tan 2x = =

- (tanx)(tanx)  1—tan®x

Alternative expressions for cos 2x are possible since
cos? x +sin2x = 1.

Then cos 2x = cos? x —sin x

1—2sin x

= 2cos?x— 1.

The so-called double angle formulae are important and are summarised below.

sin 2x = 2 sin x cos x, (a)
cos 2x = cos?x —sin?x = 1 -2sin2x= 2cos?x— 1, (b)
2tanx (c) Rules IV

tan 2x —
1—tan” x

Exercises 4.3
Write 4 = B=x in Rules | - III to verify the known values of sin 0°, cos 0° and

tan 0°.

Example 4.5

Find all the values of x between 0° and 360° satisfying

sin 2x = sin x.

Do not cancel sin x

until you've considered

the possibility that
sinx = 0.

Let’s substitute for sin 2x from Rules IV, (a).

2sinxcosx = sinx.

sinx(2cosx—1) = 0.
Then sinx =0 or 2cosx—1=20
i 1
o) sinx = Q or cosx = E

Thus x = 0°, 180°, 360°, 60°, 300°.
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Example 4.6
Find all the values of x between 0° and 360° satisfying

3cos2x—cosx = 2.

The presence of cos x suggests that cos 2x should be written in terms of cos x.

Then 3(2cos?2x—1)—cosx = 2.

6cos2x—cosx—5 =0

(6cosx+5S)cosx—1) = or use the
quadratie
Cosx = — g or 1. formula.
5 .
cosx = — P gives x = 146.44° or 213.56° cos <0
. cos <0
and cosx =1 gives x = 0° or 360°.

.. Solutions are 0°, 146.44°, 213.56°, 360°.

Example 4.7

Use the formula for cos (4 + B) and the double angle formulae to show that
c0s 34 = 4 cos3 A—3cos A.

Find all the values of x between 0° and 360° satisfying

cos 3x = 12 cos2x— 14 cosx + 3.

Now cos (4 +B) = cos A cos B—sin A sin B.
Let B=24.

o.cos(A+24) = cos A cos 24 — sin 4 sin 24 Rules IV(a)(b)
= cos A(2 cos? A — 1) —sin A(2 sin 4 cos A)

= 2cos3A—cosA—2sin?2 Acos 4

2cos3 4 —cos A -2 cos A(1 - cos? A4) sin’ think
of cos?!

When you see

giving cos 34 = 4cos3 4 -3 cos 4.

Now let’s substitute for cos 3x in the equation
cos3x = 12 cos? x — 14 cos x + 3.
Then 4cosd3x—-3cosx = 12cos?x— 14 cosx+3.

4cos3x—12cos2x+11cosx~3 = 0.

This is a cubic equation in cos x for which we use the factor

Don't attempt to
use the quadratic
formula with a
cubic equation.

theorem.

In fact, cos x = 1 is a root since
4113 - 12(1)2 +11(1H) -3 = 0.

The left hand side of the equation may be factorised since we

know that cos x — 1 is a factor.
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or use the
fomula to solve
4 cos2x -8 cosx+3 =0

Then  (cosx—1)(4cos?x—8cosx+3) = 0.
The left hand side factorises further to give

(cosx—1)(2 cosx - 3)2cosx—1) = 0.

1
cosx =1 or — or —.
2 2

Now cosx % is impossible so that

cosx =1 or —.

Then x 0°, 360°, 60°, 300°.

Exercises 4.4

Write the following as simple trigonometric ratios but do not evaluate them.
2tan15°

(1) 2 sin 12° cos 12°
(ili) 2 cos? 24° -1
(v) 1-2sin?20°

(vil) cos? 16 —sin?16

(i)~
1—tan”15°

. 1
(iv) 2 sin —x cos l)c
2 2

. 2tan%x
(vi) ——2—
1-tan 7

1
(viii) 2 cos? 56 -1
, . 4
(ix) 1 -2 sin2 30 (x) 2&1#
l—tan“ 4x

. . . . 1
Find, without using a calculator, the value of tan 26 given that tan 8 = 7

Find, without using the trigonometric functions on a calculator, the values of
sin 28 and cos 26 in the following (given that in all cases 90° < 6 < 180°).

(1) cos O = —% (1) sin® = % (i11) sin® = %

Prove that sin 3x = 3 sin x — 4 sin3 x.
Hence find all values of x between 0° and 360° satisfying the following
equations
(1) sin3x=2sinx
(ii) sin 3x=1—sin? x - sin x.
Find all values of x between 0° and 360° satisfying
2cos2x +sinx+1 = 0.
Find all values of x between 0° and 360° satisfying
(1) 3tan x= tan 2x
(i1) 4tanxtan2x=1.

Another application of the compound angle formulae given in 4.1 relates to the

harmonic form a cos 6 + b sin 6, where @ and b are contents.

38



Trigonometry II: Compound Angles and Double Angles

The harmonic form a cos 0 + b sin 0

The harmonic form a cos © + b sin 6, where a and b are constants, can be
expressed in the form R sin (8 + a) or R cos (0 + o), where R > 0 and o is an
acute angle.
Let’'sassume a >0, b> 0.
Then R cos (@ —a)=acosO+ bsinb
gives R[cos O cosa +sinOsina]=acosO + b sin 6.
Comparing the coefficients of cos 6 and sin 0, we have
Rcosa = a, (1)
Rsina = b. (2)

. . b
Division of (2) by (1) gives tano = —.
a

Squaring (1) and (2), and adding, we have

R’ (cos’a + sin’a) = @’ + b

R=g+p
and R=+a’+b".
Summary
Rcos(®@—a)=acosB + bsin0,
where tan o0 = —,
a
R=+a’>+b%.

Since a >0, b >0, a is acute.

Exercise 4.5
Consider a cos © — b sin 0, where ¢ > 0, b > 0.

Show that a cos @ —bsin® = Rcos (0 +a),

b
where tan oo = —,
a

R=+a>+b*.

Example 4.8
Express cos 0 + 2 sinf in the form R cos (8 — o).

Then R [cos O cosa +sinOsino] = cosB+2sin6
so that Rcosa =1,

Rsnoa = 2.
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Then tana = 2
and R=+17+22 =4/5.
Then o = 63.4° and thus

cos 6 +sin O = /5 cos (6 —63.4°).

Example 4.9
Express 3 cos 6 — 4 sin 6 in the form R cos (6 + o).

Then R [cos B cosa — sinB sina] = 3cosO — 4sin6

so that RcosB = 3,
Rsino = 4.

4

Then tano = 5

and R=+3"+42 =25 =5,

Then o = 53.3° and thus
3cosB—4sinB = 5cos (0 +53.1°.

Example 4.10
Solve the equation

5cos6+3sinh =2
for 0° <6 <360°.

Now 5c0s8 + 3sinB = Rcos(B—a),
where R =45 +3% =./34,
3
tano = —.
5
o = 31.0°
Thus 5cos0 + 3sinfh =2
becomes V34 cos (6-31°)=2
cos (B —31°) -z

i
0-31°=69.9, 290.1
6 =100.9°,321.1°.

Example 4.11
Find the maximum and minimum values of
(a) 2 cosH + sind.

1
(b) : :
2cosB+sin6+3
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(a)  Now 2 cos 6 +sin 0= +/5cos (B — 26.6°).
Now —1 <cos (8 ~26.6% < 1 @i}

so that the maximum value of 2cos® + sinf is \/g and the minimum
value is — \/—5_ .

1 1
(b) i IS ——
2c0s0+sin®+3 /5 cos(B-26.6°) +3

The maximum and minimum values arise when the denominator is

minimum and maximum respectively.

The maximum value is ] and the minimum value is ! .
3-45 3445
Exercises 4.6

Find the value of R and acute o in each of the following identities.

(a) 5cos89 + 12sinf = Rcos(0—w)

d) c0s® — 3smnb = Rcos(B+a)

() cosB + sin@ = Rsin(0+ )

(d) 3sin® — 4¢cosH = Rsin(B6-0a)

Find the greatest and least values of the following.

(a) V3 cos B+ sin B (b) 4cosB~3sinb

() cos6 + 3sinb (d) %———1«-—“
3+cosB+sinb

(e) ! H (4 cos 6 + 3sin Oy

7+200$9—\/§Sin6

Solve each of the following equations for 0° <8 < 360, giving your answers

correct to one decimal place.

(a) cos @ + +3sin@=1 )] 4c0s8 —-3sinb =2
(c) S5cos6 + 12sinb = 7 (d) 4cos® —7sinh =3
(e) 2cos® +5sin6 = 4 6] 4c0s826 —9sin26 = 6

Express 2 cos’® + 6 sinb cos6 in the form 4 + B cos 26 + C sin 26.

Hence find all the values of 6 between 0° between 0° and 180° satisfying
2c0s’® + 6sinb cosH = 2.

Show that

-2 < 6cos®® — 8sinBcosH < 8.
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Chapter 5

More Differentiation

Differentiation has already been considered in P1 and P2. In this chapter we consider
three further aspects of differentiation: differentiation of inverse functions and of

functions defined implicitly or parametrically.

5.1 Differentiation of inverse functions

Let’s recall how differentiation is expressed in the delta notation (P1).
When y = {(x),

let &x, &y be corresponding small increments in x and y, respectively.

We say that Y lim o
dx 3x—0 Ox

5)
5x/8y )

Now &y — 0 as &x — 0 and

or equivalently, i\—y = gim[
- w—0

-
dy

1
:%.

Rule I assists us in the differentiation of inverse functions.

or Rule I

&g
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Example 5.1
Now if y =€
then x =lIny.
Now Y e*
dx
1
so that e__1 (Rule I)
dy dy
dx
1.1
e* v
d 1 g .
Thus —(lny) = — It is convenient
dy y to express the
d | 1 difftrule in
or —(nx) = —. terms of x.
dx( ) . erms of x, /
Example 5.2
Using %(ﬁ) = 3x2 and Rule I,
show that i(x‘%) = 12 .
dx 3x3
1
Lety =x3 so thatx = 3.
Now Y _ 3x2
dx
dx 1 1 1
and e = & = = 7
Ly G 3x 333
Thus i(y%) = 17
dy 3y3

Exercises 5.1

Using Rule I and the derivative of x°, deduce the derivative of x% .

Using Rule I and the derivative of x> + 1 (x > 0), deduce the derivative of
(x—l)% (x>1).
Using Rule I and the derivative of (x> + 1)* (x > 0), deduce the derivative of

(<7 1)
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The inverse trigonometric functions may be differentiated by means of Rule L.

Example 5.3

Differentiation of sin—1 x

Now if y = sin 1 x,
siny = x.
Then & cos y
dy
so that Y __1
& dy
dx
_ 1
cosy
_ 1
++/1—sin? y
1
++/1- x?
since siny = Xx.

How do we decide on the choice of sign?

In the discussion of sin~lx, it was pointed out in Chapter 3 that ay > 0 in the

domain [—-1, 1], so we choose the + sign.

Thus i(sm—l x) = ! . Rule II
dx 2

1-x

Example 5.4

Differentiation of cos~1 x

Asbefore, if  y = coslx,

cosy = x.
Then & sin y
dy
so that d_y = L
dx dx
dy
_ 1
sin y
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since cosy = X.
As pointed out earlier,

Ed;(cos~1 x) < 0 over the domain [~1, 1]

so that i(cos'l x) = - ! Rule I
dx

Vl—xz

You are asked to differentiate tan—1 x in the next exercise.

Exercise 5.2
Complete the boxes in the following.

If y = tan~lx,
dx
Then —_—_ =
dy
ly 1
so that =~ = —7r
a5
dy
= 1.
sec’ y =1+ tan’y
for any angle y
section 3.2
= 1.
_ 1
1+x%
since tany = x.

In contrast to the discussions for sin~! x and cos~! x, there is no ambiguity in

relation to sign.

Thus 1 Rule IV

1+ x?

d
—(tan~1 x) =
i ( x)

The rules II, T, TV may be used with the other rules of differentiation to

differentiate more complicated functions.
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Example 5.5

Differentiate the following with respect to x.

(i) cos—1(4x) (i) sin-! [l}

X

(iif) tan—! (Vx—1) (i) (1 +xDtan x

(1) Let y = cos1(4x) = cos1u, function of a
B function rule
where u = 4x.

%(cos‘lx) =1

J1—1x2
Nl —uz’
u=4x, du -4
dx

dy _ dy du

:~X-.
du dx
NN
= _ ! x 4
1— 2
o 4

Ji-16x>

Now
gx—(cos‘lu) =—

<

|
|

i

(i) Let y sin’l(lJ = sin~}(x),
x

where u =
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(iii) Let y = tan~l(w),

where u = «/x—1.
dy _ dy du
dx du dx
J N
1 d -
- 1+ Xa( x—l) To differentiate
1 1 : \/x—lwecoulld
= ——ZX—(/\'—I)A;(D write y =u?
1+(“x_1) 2 where u=x—1.
1 1
= x
1+x-1 2+4x-1
1
2x\/x—1.
(iv) Let  y= (x2+1)tan~!x du ,  dv
Var T &

By the product rule with u = x2 + 1, v = tan~! x,

% = (tan‘lx)(Zx)Jr(x2 +1{ 1 ]

X +1

= Oxtan~lx+ 1.

The differentiation of functions such as (i), (ii), (iii) in Example 5.5 may be
streamlined if we modify Rules 11, 11T, TV.
For instance, let’s differentiate sin~!(g(x)), where g is some function.
Thus, if y = sin~! u, where u = g(x),
dy  dy du

= X —

dx du dx

SO i(sin"(g(x))) = —1——xg'(x). ’ Rule V
dx 1-(g(x))’

Similarly,
i(cos'l(g(x))> = ——1—xg'(x). 1 Rule VI
dx 1-(g(x))?

—
&)~

4 _ L Rule VII
(tan”" (g(x) S g(x»j
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Example 5.6
Use Rules V, VI, VII to differentiate the following with respect to x.
() sin-1(1 - x) (if) cos™![Vx—1) (i) tan-!(cot x)

R 1 L4 Rule V
M) dx(sm @ x)) m (1-x)
- (1)
2x—x°
_ 1
2x—x°

() oos (7)) = ——eex T(i7) ¢ Rile VT

... d . -~ 1 d Rule VTI,
(iii) a(tan (cot x)) = [mjx —(cot x)
1
= X —cosec’x
cosec”x

=1,
(which suggests incidentally that tan~!(cot x) = — x + constant).

In the following exercises you may use substitutions or equivalently Rules V,
VI and VIIL.

Exercises 5.3

Differentiate the following with respect to x, given that a is constant.
(i) sin-! {i] (i) cos ! [fj (iii) tan-! [f] (iv) sin-1(x2)
a a a

(v) tan—l[%} (vi) x2sin"}(1 —x) (vii) sin*l(x/;) (viii) sin—!(cos x)

x
(ix) V1-x? cos 1 x (x) Vtan~' x (xi) V1-x? —sin-1x
-1
1

tan . .
(xiv) (sin~1 x)2 (xv) ——
1+ x tan  x

(xii) tan-1 [i—ﬂ (xiii)

X
2
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Differentiation of implicit functions

Up until now the variable y has been written in for exam; Ple
. . = gin~
terms of x. We say in such cases that y 1s an y= x2+2x+ 3.

explicit function of x.

In contrast, y and x may be related by an equation such that it is not possible or
easy to write y in terms of x. Then y is said to be an implicit function of x.
For example,

W+y2+6x+4y-14 =0
and Y3 +xy+xtsiny = 1
both express y implicitly in terms of x.
To make progress in differentiating implicit functions we must differentiate

terms such as yZ, x y3, x2 sin y with respect to x. We use the function of a

function rule in combination with other rules where necessary.

d d dy .
Thus, —(?) = —()= function of
dx(Y) d (y)dx a function rule

dx
. d d dy
A , —(co = —(¢ -
gain (cosy) dy( 0S8 y)

o dy
= —8iny-—.
-

d d d .
Also, —(xy3) = PI—(x) +x—03 Product rule with
&) T -

U=x,v =y3
= y3 + x_d_(y3)é}_
dy

dy
= 3 +3x2
Y ydx

Finally, %(x2 siny) = siny a(xz) + x2 (sm y)~

. d
= 2xsiny+x2 cos y 2.

The above examples may be encapsulated in the following rules.

d . Rule VIII
= [sWl= gW) o ule
%[f(x)g(y)] = g '(0)+ f(x)g'(y)%. Rule IX
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Example 5.7
Find L4 given that
dx

x2+3x23 ~4y2 —x = 0,

Differentiate with respect to x.

d d
2x+ —Bx33) - —@H?) -1 = 0.
dx( ) dx(y)
d dy
2x+ 63 +3x2 ——(3) ~8y-—~1 =0
Y dx(y) Y1
dy dy
S0 2x+ 63 + 9x2y? =~ —8y— —1 = 0,
24 Y dx ydx
. . dy )
Collecting terms in o we obtain
(9x2y2—8y)% = 1-2x— 603

3
o dy _ 1 72)(7—6xy -
dx 9x"y° -8y

Equations of tangents and normals to curves are easily found when the curves

are given by equations in which y depends implicitly upon x.

Example 5.8

Find the slopes of the tangent and normal at the point (2, 3) of the curve
x> +y2—xy+x = 59.

The slope of the tangent at any point is given by %

Differentiate the equation with respect to x.

d d dy
34 x—03)+ —()-y-x=+1=0.
y xl(y) l(y)yxl

dy dy dy
34+ 32X 42y~ —y—x=—+1 = Q,
y ydx ydx y o
Solveforgz.

dx

dy
32 +2y—x)= = yp—p3—1
(Bxy=+2y )] y-y

3
so that b _y_z_v__}__
dx Jxy“+2y—x
3
-37 - 2
At the point (2, 3), Yo 3 23 ! = __§__
dx  3(2)(3)° +2(3)-2 58

The slope of the normal is
1 1 58

slope of tangent —= 25



5.3
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Cautionary Note
On occasions, we have observed students presenting the work incorrectly as

follows.

Given x2+y2+3x3y2 -1 =0,
—= = 2x+2y— + 9x%2 + 6x3y— = 0. INCORRECT
dx T 7 Vi X

The correct form 1s

dy dy
2x + 2y—= + 9x2y2 + 6x3y—= = 0.
Yoo T v4

Exercises 5.4

. ody . . . .
Find ay in the following, expressing your answer in terms of x and y.

(i) x2+y2=5 (i) y*=8x (i) x+2)2 = 4
(iv)\/;+\/;=2 (v) x2+3y2+3xy=2 (vi) X3 +33-8=0
(vii) xy+y3-2=0 (viii) ycosx+y2=0 (ix) x23 =38

x) xy(x+y)=4 (xi) X2+3y2 -2xy+3y-2x+5=0

Find the slopes of the tangent and normal to the curve
3y2 +2x2 =14 at the point (1, 2).

Find the slope of the tangent to the curve
B+ +4x2+3xy = 2x-1
at the point (1, — 1)

Find the slopes of the tangent and normal to the curve

(s
xtytxcosy= 2+E

at the point [2%} .

Differentiation of functions defined parametrically
It is often useful to express x and y in terms of a third variable called a
parameter, for example

x =8+t y=2C2+sint.
Then if values are assigned to ¢, corresponding values of x and y may be
evaluated which can be plotted as a graph. We shall discuss briefly the
graphical representation of such functions in the next chapter.
Our immediate interest is the differentiation of functions definec

parametrically.
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Suppose x = (1), y = g(1).
Let 8¢, 8x, 8y, be corresponding small increments in ¢, x and y, respectively.

Then 6_y = {6)}} 6_x .
&x St St

Now as ot — 0, 8x and dy — 0.

. .3 dx
Then assuming lim = = —,
00 dr
»_d
3t—0 ot dt
. D d
lim &o- _y’
8x—0 Ox dx
and the limit of a quotient is the quotient of the We assume
limits, we obtain this non-trivial

result.

w1

Thus, differentiation of y with respect to x may be achieved by first

differentiation of x and y separately with respect to the parameter ¢.

Example 5.9

Given x=18+t y = 22 +sint,

find d_y in terms of ¢.

dx

Now dx :3t2+1,d—y:4t+cost
dr dr

so that Y = [d_y % _ Ai+cost :
dx ds de 32 41

Slopes of tangents and normals to a curve are easily defined when the curve is

represented parametrically.

Example 5.10
Given x = at, y = 2at?, where a is a constant, find the slopes of the tangent and

the normal to the curve at the point described by .

Now x=at,y=2af?
dy

v - (G)E)

=22 -4
a

Do not attempt
to eliminate ¢ to
obtain 2x2 = ay

SO

The slope of the normal is —4L .
t
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Exercises 5.5

. dy . .
Find Ey in the following cases, where a and ¢ are constant.

() x=acos 0, y=asin® (i) x=cty=> (i) x=28,y=2
t
5
(iv) x=sect,y =tant (V) x=at2,y=2at (vi) x=3t+8,y=3-12
2
.. . t t
(vii) x=cos? £, y=sin3 ¢ (vul)x:l—_t—,y:: (t=1)

(x) x=(@+1)2,y=r2-1

For what values of ¢ do the following curves (represented parametrically) have
stationary points?

(1) x=£2+1, y=£ -3t

(i) x=2t+5sint, y=2+5t+5cost (0<r<2n)

(i) x=£2+1, y=tet.

Find the slopes of the tangents and normals at general points on the following

curves.
. 1 .
(i) x=t, y=—ov (il) x=2,y=14
t+1
(iti) x=cos? ¢, y=2+sint (iv) x=2cost, y=3sint

It i1s possible to find higher derivatives when functions are represented

parametrically. We restrict our discussion to second derivatives only.

Now we know that
b _(dy dx ) when the parameter
dx dt dt is ¢, of course

Hopefully you'll
understand the use of
the boxes shortly.

Let’s summarise this.
To differentiate l] with respect to x, we differentiate E_|
: . dx
with respect to ¢ and divide by R
{

Now replace y in the boxes by %—

Then to differentiate | & | with respect to x, we differentiate d
dx dx

with respect to ¢ and divide by %
Thus &y _ 3(2 %j
dx? deldx )/ \de )
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2

More Differentiation

Find &y given that x =13, y = 14,
2

Now
d¢

and
dx

Example 5.12

&

b

Find and classify the stationary points on the curve represented parametrically
by x=3t+18, y = 3t— 1.

We require Y and
dx
Now LiZ
dx
2
Also, 4

2

dy

on substituting for o and —.

Now

d2y
s

(/%)

_3-3
3+ 32
3(1-1%)

3(1+1%)

d 1—¢2
e 1+1¢° _
3432

dx
dr

_ Q) (2n-0-) 20

d 1-¢°
del1+42

(1+1%)?
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20283 22e 4288

(1+1%)?
M
(1+12)2'
2 2
Then ey _ dfl 12 [gj
dx?  drl1+¢ dr
_ 4¢
(1+:3)2.(3+31%)
2
dx 3(1+19)
For a stationary point,
Yoy
dx
2
so that ! 12 = 0.
1+¢
s 1-2 =90
so that 2 =1
and t ==+1.
When =1,
2
dy _ 41 :_i:_l<0,
dx? 3(1+1%)° 246
corresponding to a maximum point.
When =1, x  =3(D)+(1)3 = 4,
yo=3W-() =
There is a maximum point at (4, 2).
Whent=-1,
2
Py 4 (D41,
dx? 3(1+(-1%)° 24 6

corresponding to a minimum point.
When ¢t = -1, x = 3-D+(=1)p = -4
Y= 3(-D- (13 = -2,

There is a minimum point at (-4, —2).
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Exercises 5.6
A curve is given by the parametric equation x = a cos3 £, y = a sin3 ¢,

2
Show that d—y = —tan ¢ and find the value ofH when ¢ = 24
dx dx? 6

2

2t +1 1+¢
Ifx= * and y = i show tha d—y=t72 and find the value of
1+ dx  (1+21)
2
d—;}wheny=0.
dx
d2
Find—;}whenx=l+2cost,y=l+351nt.
dx

Ifx=tant, y=sint for 0 <¢ < 2nx, find % and show that

dzy 4.
— = — 3 cos*tsin ¢.
dx

2
. . . t
Given that a curve C is represented parametrically by x = 5 +3t,y=12-2t,

find the value of %x)i and show that

d’y _ 8

&2 (+3)

Show that C has only one stationary point and that this is a minimum.

Find and classify the stationary points on the curve represented parametrically
by

x=t—sint,

y=t+2cost,

for0 <¢<2m.
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Chapter 6

More Coordinate Geometry

In Chapter 5 we considered various aspects of differentiation and restated its
importance in finding slopes of tangents and normals. Most of this chapter is

concerned with the working of problems involving tangents and normals.

6.1 Equations of a tangent and normal to a curve

We start by considering an example.

Example 6.1
Find the equations of the tangents to the curve y2 = 16x at the points (16, 16)
and (1, —4). Show that the tangents are perpendicular and find the coordinates

of their point of intersection.

We find the slope of the tangent from the value of jx—y Thus we differentiate

y2 = l6x
with respect to x, recalling from section 5.2 that Here g(y) = 32.
Leon = e
& o BV
2y dl =16 ‘We don't recommend
dx substituting y = + [16x.
dy 16 8
so that - = — = —
dx 2y y
When y = 16, gX:i:l.
dx 16 2

The equation of the tangent at (16, 16) is then
1
-16 = —(x-16
y 5 ( )

sothat 2y—-x-16 = 0. (1)
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Wheny=-4, — =— =-2

The equation of the tangent at (1, — 4) is
y-(-4) = =26 1)
giving y+2x+2 = 0. (2)

1 . 1
The slopes of the tangents are > and — 2 and since 5 x —2 =—1 the tangents

are perpendicular.

To find the point of intersection we solve equations (1) and (2).

2y—-x-16 = 0, (D)
y+2x+2 = 0. (2)
Then (1) x 2 + (2) gives
S5y—-30 =
so that y = 0. Check in (2).
6+2(-4)+2=0,

Substitution for y in (1) gives
2x6-x—-16 =0

so that x = -4,

as required.

The point of intersection is therefore (— 4, 6).

Note that y2 = 16x was not written as y = + 44/x, in order to avoid the

ambiguity in sign.

Example 6.2
Find the equations of the tangents to the curve
4x2 +9y2 = 36

/
at the points Eé and —2§ .
5°5 55

Find the coordinates of the point of intersection of the tangents and show that
this point lies on the curve

4x2+9y2 = 72,
We find % by differentiating

4x2+9y2 = 36
with respect to x.
d
8x +—(92) = 0.
dX( )
Then 8x + i(9y2)d—y = 0.
dy dx
dy  8x 4x

dx _18)) _E.
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Whenx:E,yZE,
5 5
dy —4x2 g
e 9x& 9
The equation of the tangent is
6812
7 5 9 5
so that 9y—% = —8x+%
9y + 8x _150 0
5
or 9 +8x—-30 = 0. (1)
Whenx:—g,y:§,
5 5
I Sl )
9y 9 2
The equation of the tangent is
8 _ 1 9}
—-—— = —|x+=|.
5 2 5
so that 2y—E = x+2.
5 5
25
2y—x-— =20
4 5
so that 2y—x—-5 = 0. 2)

To find the point of intersection we solve (1) and (2),

9y +8x—-30 =0 (1)
2y —x -5 =0. 2)
(1) + 8 x (2) gives
9y + 16y —30-40 = 0.

25y =170
14
so that y = —.
5
Substitution of y in (2) gives
28
—=-x-5 =0
5
so that x = é
5

The point of intersection is therefore [%%} .
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4

L[4><9+9>< 196]
25

For this point,

4x2 + 9y2

1 x 1800 = 72.
25

Whilst the Cartesian coordinate representation of curves is useful its use may
often lead to difficulties when we require the equation of a tangent at a general

point of a curve.

Example 6.3
Find the equation of the tangent to the curve 4x2 + 16y2 = 1 at the

point (x1, y1)-

Now differentiation of

4x2 + 16y% =1
. dy
1ves 8x+32y = = 0.
g ydx
& _ 8 __x
dx 32y 4y’
At yp),
Y
The equation of the tangent is
X1
y-y1 = —x-xp)
4y
giving dyy —dy12 = —xpx +xq2.
' dypy +xpx = dy2 +xq2. (1)

Equation (1) may be simplified by multiplication by 4. (e, ) lies
16y y +4xix = l6y12 + 4x12 on the curve.

so that the equation of the tangent is

L16y;y+4xx = 1.

This form of equation is concise and therefore attractive. However, it has one
disadvantage as it is written : the relationship between x; and yy is concealed.

We recall that this relationship is 4x;2 + 16y;2 = 1 and we may write

1-16y?
2 = Tl
+1-16y7
to obtain x; = —2)}1—
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More Coordinate Geometry

The equation of the tangent is therefore

16yy £ 24/1-16y7x = 1,

a less attractive form of the equation.

It is desirable that the relationship between the coordinates of a point lying on

a curve is evident during the working of a problem.

Parametric representation is a useful aid in this respect.

See
Let's recall that in this representation the coordinates of Chapter 5

a point on the curve are written in terms of a parameter.

Example 6.4
Given x =2 cos ¢, y =3 sin  we may plot the points (x, ) for various values

of t. First, let's produce a table of values of x and y.

x=2cost y=3sint¢
2 0
45° 2 NGy
2

We've restricted
the values of ¢, for
convenience.

O I~

90° 0 3 Values are repeated
3 when ¢ is taken to be
135° -2 22 greater than 360°.
2
180° -2 0
225° -2 NG
2
270° -3

0
315° NG) ENY
2

360° 2 0

v
-
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The plot of the curve is as shown, where you are asked to assume that the

complete shape is as shown.

Example 6.4 showed that when given a curve in parametric representation it is
possible to plot the curve by taking values of the parameter. In principle, the

Cartesian equation of the curve may be derived by eliminating the parameter.

Example 6.5

Find the Cartesian equation of the curves described by the following
equations.

(a) x =2cost, y = 3sint

(b) x

l—cost,y =t+sint

(8 x =2cost, y = 3sint
The parameter may be eliminated by noting that
cos?t+sin2¢ = 1.

Substitution for cos ¢ and sin ¢ gives
2 2
2 4(2) -1
2 3
2 2
Yo multiply
4 9 by 36

or 9x2+ 42 = 36.

(b) x =1—-cost, y =t+sint.
The elimination of ¢ is not as obvious as in (a). Use of the x equation
gives
x =1-cost

so that cost = 1—x.

also sint = i\/l—coszt

Then use of the y equation gives
y = cos (1 —x)ty2x-x?,

an unattractive equation.
Example 6.5 showed that derivation of the Cartesian equation from the
parametric equations may or may not be straightforward and that a Cartesian

equation such as that in (b) may not reveal the features of a relationship.
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Bearing these points in mind, we advise that when you are given a parametric

representation yvou should use this representation rather than seek the Cartesian

equation. unless you are asked for the latter.

Before considering the next example let's recall from Chapter 5 that if x = x(¢),
W) then

by
de  de/ dr
Example 6.6

. . c .
P is the point [ct,—] on the curve xy = ¢2. The tangent at P meets the x-axis at
t

A and the y-axis at B. Show that the area of triangle AOB is independent of ¢.

We repeat : stay

c
Now x=ct, y =— \
t with the parametric

and & - i b __c representation.
dt dt t?
dy _ dy /dx c / 1
- = =—/— = ——F/Cc = ——
dx de/ dr 2 2

. c) .
The equation of the tangent at (ct,—] is therefore
\

t

=S = e
giving 2y+x-2ct = 0.
For the point 4, y =0 and
O0+x—~2ct = 0.
x = 2ct.

For the point B, x =0 and
2y+0-~2ct = 0.

_ 2
4 t
The area of the triangle AOB is
lAO><OB -1 x 2et x 25
2 2 t

2¢2,  which doesn't involve z.
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Example 6.7

P is the point (2 cos £, sin ) on the curve x2 + 4y2 = 4. The normal to the
curve at P meets the x-axis at 4 and meets the y-axis at B.

(a) Find the coordinates of 4 and B, assuming that sin ¢ # 0, cos ¢ # 0.

(b) Show that C the midpoint of AB lies on the curve 16x2 + 4y2 =9,

(a) The slope of the tangent is Y d_y/g and the
dx de/ dt

Slope of tangent

X slope of normal
= —1, the condition for
perpendicular lines.

slope of the normal is
I dx/dy

d%x de/ dt’

Now x =2 cos ¢, y = sin ¢ so that the slope of the normal is
—(-2sin¢) _ 2sin¢

cost cost
The equation of the normal is
. 2sint
y—sint = (x —2cos ¥).
cost

(cos )y —sintcost = (2sinf)x — 4 sin ¢ cos ¢
sothat (cosf)y—(2smmf)x+3sintcost= 0.

A When y=0,
0—(2sinf)x+3sintcost = 0
3
so that X = — cost,
2
assuming that sint # 0.
B When x=0,

(cos)y—0+3sintcost = 0
so that y = —3sint,

assuming that cost = 0.

(b) The coordinates of the midpoint of AB, C are

L0412 coss ,l(O~3sint)
27 2 2

. 3 3.
Le. —cos{,——sint |.
4 2
3 .
Thus for C, x = —cost, y = — sin/
4 2

4x .
so that cost = T sint = ——.
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Then cos?i+sin?¢ = 1
: 4xY’ ’
gives i _2) < 1.
3 3
2 2
16x . 4y )
9 9
so that 16x2+4y2 = 9.
Example 6.8

Find the equation of the normal at the point P(ap?, 2ap) on the curve y2 = 4ax.
The normal at P meets the curve again at the point O(ag?, 2ag). Show that
2q+pg*—2p-p3 = 0.
Given that ¢ = — 3, find the value of p.
Now x = ap?, y = 2ap so that the slope of the tangent is
& _dyjdx_ 2a 1

d« dp dp~ N 2ap N p
The slope of the normal is therefore — p.
The equation of the normal 1s

y=2ap = - p(x - ap?)
giving y+px—2ap~ap3 = 0. (1)
The normal cuts the curve at the point O(aq?, 2aq).
Substitution of x = ag?, y = 2aq in (1) gives
2aq +apg? —2ap —ap® = 0

which becomes 2¢ +pg?2 -2p-p3 = 0, (2)
on cancelling a throughout.
When ¢ = -3, equation (2) becomes
~6+9-2p-p3 =
or p>-Tp+6 = (3)

By the factor theorem, p — 1 is a factor.
Then (3) reduces to

- Dp?+p-6)

P -Dp-2)(p+3)

fl

I

The root p = — 3 corresponds to the point O, so that p =1 or 2.
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Exercises 6.1

Show that the equation of the normal at the point (2, 3) on the curve
xy=6 1s 3y—2x—5=0. Find also the coordinates of the point at which the

normal meets the curve again.

Show that the equation of the tangent to the curve xy2 = 1 at the point
P [zz,lj is 283y + x—32 =0.
¢

The tangent meets at the x-axis at . Show that the midpoint of PQ lies on the
curve
2xy2 = 1.

P(ap?, 2ap), O(aq?, 2aq), R(ar?, 2ar) are three points on the curve y2 = dax.
The tangent at P is parallel to the chord OR.

(a) Show that g +r=2p.

(b) Show that the line joining P to the midpoint of OR is parallel to the x-axis.

Find the equation of the tangent at the point P(5 cos ¢, 3 sin ¢) on the curve
9x2 + 25y2 =225.
Show that the equation of the normal at P 1s
(3cost)y—(Ssinf)x+ 16sinzcost=0.
The tangent at P intersects the y-axis at R and the normal at P
intersects the y-axis at §. Given that O is the origin, show that
OR.0OS =16.

Find the equation of the normal at the point P(ap?, 2ap) on the curve y2 = 4ax.
Given that this normal passes through the point (4a, 4a) show that

pPP-2p—-4 =0.
Show that there is only one value satisfying this equation and state this value.

2 2 2
P(a cos3 t, a sin £) is the point on the curve C given by x3 +y3 = a3.

(a) Show that the equation of the tangent to C at P is
ycost+xsint = asintcost.
(b) The tangent at P meets the x-axis at R and the y-axis at S. Find the

maximum value of the area of triangle ORS, where O is the origin.
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Chapter 7

Integration 1

Integration has been considered previously in P1 and P2, a number of standard forms
being introduced. In this chapter, we introduce some techniques which enable us to

integrate functions more complicated than the standard forms.

7.1 Standard forms

The results of the differentiation of inverse trigonometric functions carried out
in Chapter 5 enables us to extend the list of standard forms given previously
in P1 and P2. For convenience the standard forms are listed below. The

constants of integration are omitted.

g(x) [g(x)dx
X” xn+1
(n=-1)
n+1
oS X sin x
sin x —COS X
Differentiating
sec? x tan x the right hand
column gives the
sec x tan x Sec x left hand column.
cosec? x —cotx
cosec x cot x — COSec x
1 sin—! x
1— 2 —costx sin”x and
—cos™!x differ
b stant.
1 tan—lx y a constan
1+ x?

e
"

N
Y

% | =
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7.2

Integration I

In P2 we used some of the standard forms to integrate functions of the form
flax + b), where a and b are constants.

Example 7.1

In the following, the constants of integration are omitted.

(a) Jcos(2x +5)dx = %sin(Qx +5)
(b) Jsin(Q —4x)dx = %005(2 —4x)
(C) J<€5'Y_7dx — %65,\'—7

1 1

(d) ——dr=—In|3x+2|
3x+2 3

It was pointed out in P2 that the above results only apply when the inner

expression is of the form ax + 4. Thus

sin(3x” +2x+7)

cos(3x” +2x+ 7)dx #
6x +2

The type of results given in (a)-(d) above is the starting point for a further look

at integration.

A first look at integration by substitution

It is clear that successful integration of functions involves the recognition of
the functions as being of standard or near standard form.
Thus, to find

[7(3x — 2)% dx

we recognise (3x — 2)* as involving the linear expression 3x — 2.

Then from P2, we may write

5
[703x—2pdx = 1CX=2" 1y [ c(ax + by dx
5)(3 :c!ax+b!n+l,
7(3x-2)° n+l

Again, to find
IZ cos(Sx+ 7)dx
we recognise cos(5x + 7) as involving the linear expression Sx + 7, and hence

2sin(5x+7) k

J2cos(5x+ 7)dx = 5
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To develop further our ideas, let’s reconsider the above two integrals by
making use of a substitution or change of variable.

Example 7.2
Find | 7(3x — 2)4 dx. (1)
Let u = 3x-2. 2)
Differentiate (2) with respect to x.
du
— =3
dx
du .
Treat — as a fraction
dx
so that du 3
dx
may be written du = 3 dx
giving dx = % du. 3)

Substitute for 3x — 2 from (2) and dx from (3) into (1).
Then | 7(3x — 2)4 dx becomes

J‘7u4%du = %J‘u4 du

Integration
is now with
_7 J'u4 du respect to w.
3
_7 ﬁ + constant u=3x-2,
375 from (2)
7

= E(3x —2)° + constant,

which is the answer found previously.

Example 7.3
Find 12 cos (5x + 7) dx. (1)
Let u = 5x+7 2)
so that oo

dx
or du = 5dx.

dx = édu. 3)

Substitution from (2) and (3) into (1) gives
jz cos (5x+7)dx = jz cosuédu

= % Icosu du

[\

= — sin u + constant.

[\ R

= —sin (5x + 7) + constant.

w
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Exercises 7.1
Use a substitution of the form u = ax + b, where a and b are constants, to find

the following integrals.

(a) j (2x + 1)2 dx (b) Iﬁdx (c) j sin(9x + 1) dx

(d) j sec2(2x + 9) dx (e) j cosec (3x + 1) cot (3x + 1) dx

O [T @ = ) Jnglex

The integrations in Examples 7.2, 7.3 and Exercises 7.1 were closely related to
the differentiation of a function of a function.
We recall that

d = f'(g(x)g'(x
a(f(g()f)) f'(g(x))g'(x)

and both our integrals in examples 7.2, 7.3, namely

(a) | 7(3x—2)* dx
(b) | 2 cos(5x + 7) dx,
may be regarded as being of the form
J£(g()g'(x) dx,
except for the appearance of some constant factors

In(a), f'(x)=x*
g(x)=3x-2.

In (b), f'(x) = cos x,

gx)=5x+7.

which do not affect the general structure of the

mntegrals.

Let’s therefore switch our attention to more general J’cg-s%y-c3+ P2+ )dx
—— e’

mtegrals of the form
J£'(g(x)g'(x) dx,

where g(x) is not necessarily a linear expression in x.

If we let u = g(x)
du
then — = g'(x
o 8 )
and du = g'(x)dx.
Then substitution for g(x) and g'(x) dx in | f'(g(x))g'(x) dx,
gives [ £'(u) du = f(u) + constant

= f(g(x)) + constant,

This is an important result and is therefore displayed.

Substitution Rule

Given an integral of the form

J £ '(g())g'(x) dx, (A)
write u = g(x)
du = g'(x) dx.
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Before we attempt some examples, let’s note the form of the integral

f'(g(x))g'(x)
in (A).
The term g'(x) is obtained by differentiation of the inner part of {'(g(x)).

Example 7.4

Find [(3x2+ 1) cos(x3 + x + 1) dx, 509 = B+ x+1
\_/\——/‘—/

Now cos(x3 + x + 1) is a composite function and

%(ﬁ +x+1)= 3x2+ 1 is also present in the integral.

Let u = (P +x+1)
so that du 3x2+1
dx
or du = (3x2 + 1) dx. «—— & These two give du.
Then [3x2+ 1) cos(@d +x+ 1) dx
\-/

= Jcosudu = sinu+k

=sin(3+x+1)+k
Example 7.5

Use a substitution to find

Jaxrx' +1dx @

Let u =x4+1
so that du = 4x3 dx.

Then the integral becomes

I«/;du = u% du
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Example 7.6
Use a substitution to find
[ (24 1) sec2(x3 + 3x + 1) dx

Here we note that the inner term
gx) = 3 +3x+1
so that g'(x) = 3x2+3.

Whilst f'(x) is not present in the integral we note that x2 + 1 = % g'(x).

Let u = x3+3x+1.
du _ 3x2 +3
dx
so that du = (3x2+3) dx
= 32+ 1) dr.

Then x2+1)dx = % du.

The integral then becomes

J‘sec2 u %du = % J‘sec2 u du

= l’[anu—i—k
3

%tan(x3+3x+l)+k.

Example 7.7
Find  [x‘e”™ dx.

Here we note that when we differentiate x> + 1 we almost gr)=x+1

obtain x4, except for a missing constant.

Let u =x>+1

so that du_ 5x4
dx

and dx = %du.

The integral becomes

Ie” %du % Ie“ du
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Example 7.8

Here we note that when we differentiate x2 + 4 we obtain 2x which is 2 x the

top of the fraction.

Let u=x2+4

so that du 2x
dx

.. 1

giving xdx = 5 du.

The integral becomes
11
f—u—du =~ [~du
2°u
1
= 2 In | u | + constant

1
-5 In | x2 + 4 | + constant.

Examples 7.5 and 7.8 represent special situations where the integrals are of the

form

constant x (g(x))" g'(x) dx, [ 453 (=*+ 1)’de

constant x Ig( x) I - dx
g(X) 2+4

These cases often turn up and you may find it useful to regard them as

standard forms. Use of the substitution u = g(x) then gives

[ @y g dr = —(g;xj)l k(B
jg(x) = In|g(x) | +k. (©)
g(x)

Exercises 7.2
The following integrals are of the form constant x J flg(x)) g'(x) dx. Use
substitutions, or if appropriate the standard forms (B) and (C), to find the

following integrals.

@ 203+ 1)4de (b) J‘;ij:gdx (© j(z—iydx
X

(d) [2sec? (B +)dx (¢) [=— () [(2x +1) sin(x2 + x + 5) dx

V1+3x7
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(g [ex(l+em3dx  (h) j\h—sm cosxdx (i) j\/xz +ax+1(x+2)dx

0 ] ledx (k) ffx—de (1) T (sin(2x) + 4)3 cos(2x) dx
1+x? X +x-3
(m) ["Xar W g o) [l
x 1-cosx e +x

)] | tan? x sec? x dx (q) [sindxcosxdx (r) [ cosec? x cot x dx
Detach one of
the cosec terms.

In the previous section the usefulness of the substitution u = g(x) was

A second look at integration by substitution

highlighted when the integral is essentially of the form [ f'(g(x)) g'(x) dx.

In this section examples of other situations are given where substitutions are

useful.
Example 7.9
By writing u = 5 — 3x, integrate x(5 ~ 3x)20 with respect to x.
We must find | x(5 — 3x)20 dx. (1)
Let u=5-3x 2)
Then du_ _ 3
dx
so that dx = - %du. 3)

Inspection of the integral in (1) shows that we must substitute for x, (5 — 3x)20
and dx. The last two substitutions will use (2) and (3). For x we note that

u =5-3x
so that x = 5;u. (4)

Substitution from (2), (3), (4) into (1) gives

L 5—y 1 1 Relpember the
J[ } u?0, — 3 du - j(S —uw)u’™ du final integral must

3 involve u only.

= é j(uZI —5u*) du

22 21
_ u B Su
9%x22 9x21
22 21
_ (5-3x) _5(5—3x) T
198 189
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Example 7.10
. 2-3x .
Find dx by writingu = J1+x.
Vi+x
1
Now u = Jl+x = (1+x)? (1
. du 1 -1 1
1ves — = —(1+x) 2 = .
8 & 2 21+ x
dx = 2+/1+x du. 2)

Now we must remove all traces of x from the integral.
What about the term 2-3x?

Now u = l+x

so that u? = 1+x

and x =u?-1,

The 2-3x =2-32-1)

so that 2-3x = 5-3u2, 3)

Substitution from (2), (3) into the integral gives

5—3u?
241+ x dx
J.\/l+x

i

We repeat: make
sure that the final
integral involves

[2(5 = 3u?) du

=2[5-3u?)du u terms only.
= 2(5u—wd)+k
= 10u-2ud+k

ii

3
10V1+x —-2(1+x)2 + k.

Example 7.11

Now we know that
J.dxﬁ = tan~lx+k
T+ x”

or Jdu, = tan~lu+ k.
1+u”

(a) By writing x = au, find

dx ,
J. CR (a 1s a constant).
a +x°

(b) By writing u = 2x, find

J dx
1+4x?"
(a) X = au o))
du 1
so that — = —
dx a
or dx = adu 2)
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Substitute from (1) and (2) into [——— .
a +x

The integral becomes

T 5 4 - NN are in the integral
a’ +a’u’ a’(l+u®) e

al1+u’
~ Dtk
a
= ltan’(ijntk.
a a
(b) u = 2x )
so that du 2
dx
1
or dv = —du. )

Substitute from (1) and (2) into Jll d:
+

The integral becomes

1 1 1 ¢+ du
'[ ——du = — 5
1+u” 2 21+u

1
= —tan~l (u) +k
2 (w)

= % tan~1 (2x) + . @

The occurrence of square roots in integrals may often be removed by
trigonometric substitutions. The essence of such transformations is that
sin? u + cos? u= 1,
1 +tan? u = sec? u,

for any value of u.

Example 7.12

Use the substitution x = 3 sin « to find

J‘ dx This could also be worked
9_ 52 by using x = 3u and using
dx 4
Now x = 3sinu = sin”'u + constant
dx 1~u’
so that — = 3 cosu.
du
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Also

Substitution from (1) and (2) into the integral

gives

Integration 1

dx = 3 cosudu.
Vo—x2 = J9—9sin’u
9(l—sin2 u)

9-x?2

\/9coszu.

3 cos u.

'[3cosu du = Jdu
3cosu
= Jldu
=u+k

sin” [ij +k.
3

(1)

(2)

When you see sin? #,
think of cos? u.

The integral
involves u only.

The 1 has been
inserted for the sake
of greater clarity.

Notice that the trigonometric substitution enabled us to remove the square root

from the integrand

Example 7.13

Use the substitution x =

Now

so that

and
Also

Substitution from (1) and (2) into the integral gives

'[(5 sinu)’

5 sin u to find '[de
V25—’

Ssinu

Scosu

5 cos u du.

N& &&=

V25— x

V25— x?

Scosu du

Scosu

= 25(1-sin?u)

V25-25sin2 u

\/250052 u.

5 cos u.

[25 sin? u du

25 [ sin? u du.

(1)

2)

The integral | sin2 x dx requires the use of a double angle formula.

Now

so that

cos 2u

sin u

25 [ sin2 u du

1-2sin2u
1—cos2u
72 .

25 '[1 —cos2u
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25
=5 J.(l—cos2u)du

= 2—25(J.1 du — J.COS2u du)

x=5sinu

u:sin“(g)
25 . /

= Tssm‘l{%} —% 25— x% +k 25-x*=5cosu

25 . (x) 25 2sinucosu
—sin" | = | -——.—+k
2 2

Exercises 7.3

Use the substitutions to find the following indefinite

integrals.

x? dx
(@) J.(x——3+1)2dx (u=x3+1) (b) J. . (x=2u)
(c) J.—\/l—f)c—?dx (u=1-x2) (d) J.«/1f7 (x = sin u)
X cosx )
) jﬁdx @=2c+1) (D [mdx (w=1+2sinx)
(x=2tanu) (h) J.%dx (u=x2+4)

@) J.x\/x2+1dx (w=x2+1) G) jL (u=2%)
1-4

(k)

_ex)

=

sin x
O J.tan x dx (u = cos x and note that tan x = )
cosx

(u=x2+1) dx (x=tanu)

X
™ e O [
(0) j sinf xcosxdx (u=sinx) (p) J.w/25—x2 dx  (x=5sinu)
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Find the following integrals by making use of suitable substitutions.

dx (two possible substitutions)  (b) J\/9—x2 dx

X
S ey
(c) .[\/l+sinxcosxdx (d) J dx

9+x°

(e) -[1 j;cxz (f) | cos’ x sin x dx

(2) f sec? x tan x dx dx (two possible substitutions).

w5

Use the substitutions to find the following integrals.

(a) Ps—xzdx (u=+x-2)
J Ax-

(b) SN (u=x7)
J N1-x*

(c) x(x—1)° u=x-1

(d) (x=D(x+2Vdx  (u=x+2)

(e) de (x =sinu)
JANl=x7

) r;a’x (x =2sinu)
J P4 -x?
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Chapter 8

Integration I

In this chapter we introduce some additional techniques for finding indefinite integrals

and also reconsider definite integrals as introduced in P1.

8.1

Integration using partial fractions

Partial fractions were introduced in Section 2.2. When partial fractions are
used to find integrals it turns out that two standard integrals appear frequently.

For that reason we give further consideration to those types of integral.

Example 8.1

Find the following integrals.

@ [——a J-L?dx
34 5x (2x+3)°

It will be useful if you're able to find quickly the integrals of the above types.
For that reason we summarise some general results (the constant of integration

is omitted for convenience).

j cdx . Injax +b|. (A) substitution

ax+b a u=ax-+b

J ¢ P ¢ . (B)
(ax +b)’ alax+b)

We recommend that you know thoroughly the above results.

Then returning to the integrals (a) — (d), we obtain by means of the formula:

T4 4 ) ;
(a) dx = —In|3+5x\, Again we omit
3+ 5x 5 the constant of

integration

(b) j%dx S
(2x +3) 22x+3)  (2x+3)
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Exercises 8.1

Find as quickly as possible, the following integrals.

! 6 2 5
® .[3—2de ®) J(4x—7)2dx © j{3x+2+(3x+2)2}dx

We are now ready to use partial fractions to find definite integrals. You are
advised to refer to Section 2.2 to remind yourself of the various forms of

fraction.

Example 8.2
Use partial fractions to find the indefinite integral _ el
(x—=2)2x+3)

We split the integrand into partial fractions as

suggested.
4x -1 _ 4 N B
(x-2)(2x+3)  x-2 2x+3

where A and B are constants.

Two linear factors
in denominator

(h

Clear the fractions in (1) by multiplying throughout by (x — 2)(2x + 3).

o 4x~1 = AQx+3)+ B(x - 2). (2)
Letx=21in (2).
42— 1 = 4Q2)+3) +BO) A suitable choice of
so that 7 =74 x-values eliminates one
B of the coefficients.
A =1.
Letx=—-=1in(2).

N
|
o | w
~
J
—_
i

3
A(0) +B[—§—2)

so that -7 =

|

=
|

SRS |
\_._/

B =2

Using the partial fractions in the integrand, we obtain Integrate term

by term and use
result (A) twice.

Ml——-k 2 dx:1n|x—2|+2.—l—ln|2x+3|+k
x—2 2x+3 2

= In|(x — 2)(2x + 3)[ + &,

on combining logs.
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Example 8.3
Use partial fractions to find
IxT +2
(x =D(x +2)°
7x? +2 A B C
PRV + HPNRPSCE
(x—D(x+2) x=1 x+2 (x+2)

where A4, B and C are constants.

Let

o))

One linear factor,
one repeated linear
factor.

Clear the fractions by multiplying (1) throughout by (x — 1){x + 2)2.

s Tx2+2 = Ax+2)2+Bx-DEx+2)+Cx-1). (2)

Letx=11n (2).
7(1)2+2 = A(1 +2)2 + B(0) + C(0)

so that 9 = 94.
o A4 =1
Letx=-21n(2).
7(=2)2+2 = A0)+B0)+C(-2-1)
so that 30 = -3C
C =-10.

There is no further obvious value of x to substitute.
Let x=01n (2).

70002 +2 = A(2)2+ B(-1)(2) + C(-1)
so that 2 =44-2B-C
= 4(1)-2B—-(-10)
= 14 - 2B.
o 2B=14-2 =12
so that B =6.
Using the partial fractions in the integral, we obtain
4“ ! + 6 _ 10 }dx= Inp—1]+6Inx+2|+ 10 +k
x=1 x+2 (x+2) x+2
= In( |x ~ 1] [x+2[6) + 10 +k,
x+2

on combining the logs.

Summary
The work in Examples 8.2, 8.3 may be summarised as follows. The lower

case letters a, b, ¢, d, e, f, I, m, n, p, q, v, s, t are given constants and capital
letters 4, B, C, D, E and F denote constants to be determined, and & is an

arbitrary constant of integration.
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Casel
1 6 10
+ - 2
x=1 x+2 (x+2)
- i S
ax+5 cx+d
= ﬁ1n|ax+b|+£ln|cx+d|+k.
a c
Case JI

nx’ + px+q .
(ax +b)(cx +d)”

e [ Lo E
ax+b cx+d (ex+d)”

E
—
clex+d)

= Eln|ax+b|+21n\cx+di— k.
a ¢

Exercises 8.2

1. Show that
3x+4

(x=2)(x+3)

I

In | (x — 2)2(x +3)| + k.

m X2k
x+1 x+1

2. Show that
4x+1

(x+1)*(x-2)

3. Integrate the following with respect to x.
(a) ;;1 (b) 25“\,7+2 (c) 22)6—_5 Do you need
3xF—x-2 x“—4x+4 x“=5x+6 partial fractions
1 1 18—x hore?
(d) (e) O ———
4x* -9 16— x* 12x% —7x-12
1+5x+x2 x+1 . 1
() —1% A (i) [——dx
x(x+1) (x-1) 4x—x
. X
4. Find J —dx by
I-x°
(2) partial fractions (b) the substitution u =1 — x2.
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Integration by parts

We have seen in Chapter 7 that under some circumstances products of

functions may be integrated. Thus, for example,

) 1 ., substitution
Jx cos(x”)dx = 5 (sinx")+k. isu=x2

However, substitution does not assist when we attempt to find
Jx cos x dx

and a different approach is required.

The approach we adopt is known as integration by parts and is closely related

to differentiation of a product.

Now i(uv) = vd—u+uﬂ.
dx dr  dx

Integrating, we obtain

d d d Integration and differentiation
J—(uv)dx = Jv—udx+Ju—dxv 6@3
dx dx dx
so that uy = Jvd—udx+Ju%
dx dx
J‘v%dx = uv—Ju—dx (1)
dx

The result (1) is known as the integration by parts or the parts formula.

The essence of the integration by parts method is to replace an integral

Jv didx] by an integral that is easier to find Ju £1de .
dx dx

Example 8.4
Find [ x cos x dx.

Now the integrand is a product of two terms, namely x and cos x.

The parts formula is

J‘v%dx uv — Ju%(h‘. (H

Don't worry about the
other possible choice :-
V=C0SX, = X
for the moment. We'll

. . . : . du . .
1gnoring the constant of integration when finding u from . by integration.

fl

il

Let Vv = X, COS X

Il

dv .
sothat — =1, u sin x,
dx
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The substitution for u, v, %, dv i (1) gives
dx dx

[ xcosxdx = (sinx)x—]sinx.1dx

(R T 1
du

vy — u v
dx

= xsinx—(—cosx)+k = xsinx+cosx+k.

Thus, [ x cos x dx was, in effect, replaced by the easier integral [ sin x dx.

Sometimes, the integration by parts formula is used more than once in a

question.
Example 8.5
Find [ x2 e* dx.
The parts formula is
'[vd—udx = Ltv—'[-ugd.x. )
dx dx
Let v = x2, du _ et
dx

so that d_v = 2x, u = e~

dx

Then the parts formula (1) gives
[x2erdx = (e9x2—[er. 2xdx
sothat  Jx2e¥dx = x2e%—2] xerdx. (2)

Now | xe* dx is not immediately integrable because of the presence of the

term. Let's use integration by parts to work out | xe* dx.

Let Vv = X, d_u = ef
dx
so‘[hatQZ =1, u =¢*
dx
Then .[xe‘ dx = efx - _[e"'. 1 dx
= exx—Ie“dx
so that J.xe"dx = ex—e" + k.

Substitution from (2) and (3) into (1) gives
'[xz e dx = x2e" —2(e¥x — ) + k

= (x2-2x+2)eX + k.
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The integrals in examples 8.4 and 8.5 contained a power of x (x and x2,

respectively) and those powers of x were chosen as v. The choice for v was

. . du .
appropriate because u was easily found from - 1n each case.

du

These two ecxamples can be summarised by the i cosx,u=sinx

following rule for the choice of v and % %: & y=e*

When using integration by parts, if one of the
functions involves a polynomial in x and the
other function is easily integrated, let Rule
v = the polynomial in x,
du the other part of integrand.
dx
Alternatively,
When the other part is not easily integrated, we
choose
du . Rule II
— = the polynomial in x,
dx
and v = the other part of integrand.

Example 8.6
Find | 2 In x dx.

Here In x is not easily integrated so Rule II applies.

Let v = lnx, du _ x2,
dx

dv 1 x°
sothat — = —, uy = —.
x 3
d d
Then J-v—udx = uv— u—vdx
dx dx
. s x 1
gives J.x Inxdx = —lnx- |—.—dx
3 3 x
3 2
= X - .[de
3 3
3 3
= x—lllx—L+k
3 9
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We recall that xU = 1 so that Rule II may be applied when it is not apparent

that a power of x is present.

Example 8.7

Find | tan~! x dx.

Now [tan-ldx = [1.tan"! xdx.

Rule II applies because tan~! x is not easily integrated. That's what the
du question is about!

Let v = tan~lx, = =1,

dv 1
sothat — = 5, =X
1+ x
Then J.v%dx = uy-— uﬂdx
dx dx
gives [tan-lxdx = xtan™ x— [— —dx
1+x
= xtan"! x —%1n|1 +x?|+k.
Exercises 8.3
1. Use integration by parts to find the following indefinite integrals.
(a) | xsinxdx (b) [ x2 cos x dx () | (x+1)e* dx
(d) [x3In2xdx (e) Jx2 e dx (©) Jsin~1 x dx
(g) [Inxdx (h) [ x cos 2x dx (i) | (m —x) sin 3x dx
2. Show by means of a substitution that
J—x—dx = —J1-x%,
V1—x’

omitting the constant of integration.

Use integration by parts to find

I

3. Use integration by parts to show that
1 .
jln(x+ ) dx = 2x/x+1[1n(x+ 1) —2]+k assuming that x > — 1.

Nx+1

sin™ xdx.

4. Use integration by parts to show that
J X 4 = % Inx—In(x+1)+k, assuming that x > 0.
(x+1)° x+1
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Definite integrals

We consider a number of examples. We recall that
b
J S )dx = f(b) - f(a)

Example 8.8

. : 1
Sketch the curve y = sin x and the line y = 5 between x = 0 and x = n. For

these values of x, find the area above the line and below the curve.

Y A

|-

v
=

We require the shaded area.

The curve and the line intersect at the points 4 and B whose x coordinates

satisfy
sinx = % (equating values of'y)
n 5nm
SO x = —, =
6 6
The shaded area = area under the curve between the points 4, B
— area of shaded rectangle
Sm/6
. (5
= J.smxdx——{—n—zl
e 206 6
= cosx]sn/6 I
/6 3
_ BB zom
22 3
Example 8.9

/2

Find .[ xcos2xdx
0

Use integration by parts with

d
Vv =X, & cos 2x
dx
dv sin2x
—_ = 1’ u oy .
dx 2
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i

r/2 . n/2 w2 .
Then j xcos 2xdx Ksmzz‘x]x} - J %
(4} [4]

. w2
{xsm 2x . cos Zx]

I
(
2.
=
=
+

As we have seen, integrals are sometimes evaluated by substitution of a new
variable. It is sometimes troublesome to rewrite the result in terms of the
original variable, (see Example 7.13). When finding definite integrals we may
avoid the process of restoring the original variable by changing the limits to

correspond to the new variable.

Example 8.10

3
Evaluate J --J—r——-dx.
0 sz +16

We use the substitution

u = x2+16
du
so that — = 2x
dx
and dx = L du.
2x
We also transform the limits.
When x =0, u =x2+16 = 02+16=16,
x=3, u =32+416 = 9+16 = 25.

Then the integral becomes

25 d 1 d
\7_ “ = — Tu Note the new’
2x 2 limits. Do not use 'old'
Ch “ limits with the new
1% C& variable.
= — (U B du \/\/\/

)
s
N
ey
o w
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Example 8.11

Evaluate J- V4 —x* dx by means of the substitution of x = 2 sin u.
Q

2sinu

1

Now

i

so that 2cosu

x
dx
du
dx = 2cosudu.

4—(25inu)2

V4 —4sin’u

V41 —sin® u)

\/4coszu.

2 cos u.

or

Also 4 x?

il

ll

l

Il

4-x?

We also transform the limits.
x =0 gives 0 =2sinu

I

i 0
so that u =sin | =] =0.
2
x =2 gives 2 =2sinu
so that smu = 1,
— il _ 7
u = sin~+ (1) = —.
( 2
Then the integral becomes Substitute for
/s /s dx, /4 =2 and
8 e the limits
'f 2cosucosudu = 4 J. cos” udu
0 6 cos2u=2cos2u—1
- cosutl_ 2.,
* T 14+cos2u 2 B
=4 j ST
. 2
m/2

It

2 j 1+ cos 2udu
0

. /2
Z{M . sin Zu}
2 Q0

2{E+ s ‘O—smﬂ

i

il

2 2 2

= T

90



Integration I]

Example 8.12

2 2
Evaluate I de , by using the substitution u = x2 + 4.
, X +4
Now u =x2+4
so that du_ 2x
dx
and dx = L du.
2x

We note that x2 + 2 may be written in terms of « as follows:
W42 = x2+4-2 = y-2.
We also transform the limits.
When x =0, u =x2+4 =02+4 = 4,
x=2, u =22+4=4+4 =38

The integral becomes

fx(u—-2) 1 dr = 1 ¢ u—2dx The final integral
,[ v 2x Y must contain « only.
4 7 4
1
1
= 5[8—21n8~4+21n4]

2
_— 4+1r1—4—2 - Lgiml
2 8 2 64

= 2+llnl =2——l—ln4
2 4 2

il

= 2-In2.

Exercises 8.4

Evaluate the following integrals.
dx

@) IU N9-2x
: X
@ '[0 V25— 4x? =

2 4 .
x+1 - dx x=4sinu
0 [ BB g [
0X+2) 0 16—X~
r > dx x=5tanu

/2

() [ x*sinxdr (k) I2x4lnxdx (0 f xe > dx

(b) j | xe ™ dx (c) jmcos2 xdx

0

/2

(e) I sin® xcosxdx
Q
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Integration II

Find the area between the curve y =cosx, the x-axis and the lines x=10

and x=

ro | a

Find the area between the curve y = cos~! x, the x-axis and the lines x = 0 and

x=1.

Find the area between the curve y =tanx, the x-axis and the lines x=0

and x=£.
4

Find the area between the curve y = x sin x, the x-axis and the lines x = 0 and

i
x=—.
2
. 1 .
Sketch the line y = 3 and the curve y = sin 2x between x = 0 and x = %
) . 1 .
Evaluate the area in your sketch between the line y = > the curve y = sin 2x,

and the line x = %

Volumes of solids of revolution

Definite integrals may be used to calculate volumes of surfaces of revolution.

The method is illustrated by an example.

Example 8.13

Find the volume of the solid generated by rotating about the x-axis the area

undery=leromx:0tox:4.

The area in question is shown shaded in the diagram. Rotation of the shaded

area generates a cone.

vt

We are asked to find the volume of this cone.
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. 1 .
A typical element of area under y = Ex 18 shown below.

y 4

Rotation of this area about the x-axis generates a typical element of volume.
This volume element is approximately a cylinder of

thickness Ax, with one circular face of radius y, the other The size of the

shaded element is
exaggerated.

of radius y + Ay. Thus the volume generated lies

between that of a cylinder of volume my?Ax and a
cylinder of volume n(y + Ay)2Ax.

The sum of the volumes of the smaller (or bigger) cylinders is an
approximation to the volume required. By making Ax sufficiently small, we
can make this sum approach as close as we please to the volume of the solid of

revolution.

Thus required volume = lim ZImy?Ax = lim Zn(y + Ay)? Ax.
Ax—0 Ar—0
4
This limit is jnyz dx.

x=0

In general, the volume of revolution
4

r between x = a, x = b is J ny’d x.

a

1 : . .
In the present case, y = Ex, as given by the equation of the line.
Then the required volume is

nf[%x}zdx

[

I

%J:xzdx

Il
| ——
S8
1
[ S~

If
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Example 8.14
Find the volume of the solid generated by rotating about the x-axis

(a) the areaunder y =x2 fromx=1tox =2,

(b) the area under y =tan x from x=0to x = %
The formula to be used in both cases is

Volume = J. ny’dx,

where y = f{x).
(a) The volume is

‘rtJ.zyzdx
1

Il
—
— e~

=
&

Il

b=

w Yy,

B~

&

32 1| 3ln
S D el
5 5 5
(b) The volume is
/4 n/4
‘rr J. yidx = n[ (tan x)* dx
0 0

‘When you see
tan2 x think of
sec? x because

1+ x = secl x.

n/4

n '[ (sec’x—1)dx
0

/4
0

n[tanx—x]

AanZ-Z_040
4 4

T{l—ﬂz%m—n).

A similar formula applies if areas are rotated about the x and y have

reversed their
roles.

y-axis. In this case, the shaded area generates a volume

d
TC'[ x’dy .

0
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Example 8.15 y
A
Find the volume of the solid generated by rotating 1¢

about the x-axis the area in the first quadrant enclosed

by y=x4%y=1,y=16 and the y-axis. 1
0
16 16
The volume is nI x*dy = nI\/;dy
1 1
[2 }
= ]
- 21[16%—1%]
3
_ 2my,s
- ]
-~ I64-1]
3
= 42m.

Exercises 8.5

Find the volumes of the solids generated by rotating each of the areas bounded

by the following curves and lines about the x-axis:
(a) x+2y—-4=0,x=0,x=4,y=0;
b)) y=x2+2,y=0,x=0,x=1;
© y=+x,y=0,x=4
(d) y=x(x-2), y=0,x=0,x=2;
(e) y=l,y:0,x= 1, x=2.
X
Find the volumes of the solids generated by rotating each of the areas bounded
by the following curves and lines about the y-axis:-
(a) y=x-2,y=0,y=1,x=0;
(b) x=1y,x=0,y=4;
(©) y=x2+5,x=0,y=9;
(d) y2=x,x=0,y=2.

The area enclosed by the curve y = cos x + sin x, the x-axis and the lines x = 0

7. . }
and x = 5 1s rotated about the x-axis. Find the volume generated.
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A cup is formed by rotating that part of the curve y =x2 —4 lying
between (2, 0) and (3, 5) about the y-axis. Find the volume generated.

The area enclosed by the line y = rh_x’ the x-axis, the lines x = 0, x = & is rotated

about the x-axis. Find the volume of the cone generated.

The equation of a circle centre the origin and radius r is x2 + y2 = r2. Sketch
the circle in the first quadrant (x > 0, y > 0) and shade the area enclosed by the
curve and the x and y axes. Find the volume generated when the area is rotated

about the x-axis. Deduce the volume of a sphere of radius r.
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Differential Equations

Chapter 9

Differential Equations

Mathematics is used in a variety of fields to develop theories: chemistry, economics,

engineering, physics, sociology, for example. When mathematics is used in such a

way we say that the situation has been modelled mathematically or we have set up a

mathematical model of the situation.

A mathematical model may involve the rate of change of a quantity.

9.1

Rates of change
The following are examples of rates of change in various fields.

Velocity and Acceleration

If v (¢) 1s the velocity of a body at time ¢, its acceleration is the rate of change

: e : d
of velocity with time ¢ and 1s therefore denoted by d-v
¢

Rates of Change of Functions

dy . . .
If y = fix) then :i_x)i is the rate of change of y with respect to x and is interpreted

as the gradient of the curve v = f{x) at a point.

Malthus Model of Population Growth
The economist Thomas Malthus developed a

There is an assumption
here that N(r) can take any
non-negative value.

In practice N(f) may take
non-negative integer
values only.

model involving the rate of change of a human

population. If M(¢) is the population size at time ¢

. dN
then the rate of change of N(¢) i1s s or N '(¢).
!

Diffusion of Information

Here the spread of rumours or messages through a population is considered. If

P(#) is the proportion of a population that has received the message, the rate of

change % or P '(f) is of interest.
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Differential Equations

Decay of Radioactive Material

Pure uranium decays very slowly into another substance

dm <
dr 0

due to the emission of alpha particles. The amount of because m(f)
uranium contained in a lump of matter will therefore decreases with

time.
decrease. If m(z) is the amount of uranium then %nl is the e
t

rate of change of the amount of uranium.

Rates of change in Economics

Rates of change of functions in Economics are often called the marginal value

of the function. For example, if the cost of manufacturing x items is C(x), the

C . . . .
rate of change %x— or C '(x) is known as the marginal cost. The interpretation

of C'(x) is that it is the approximate cost of manufacturing an additional item

when x items have been manufactured.

Differential equations
Differential equations are equations involving the derivatives or rates of

change of functions. Typical examples are

% =32+ 41+6, (i) (mechanics)

t

m = AP(1 - P), (11) (diffusion of rumours)
t

2
and 4’0 + 3d_Q_ +20 = 2sint. (1i1) electrical charge
de? dr Q(¢) on a condenser

In equations (i), (i1) the highest derivative involved was the first [d— or %EJ
t ¢

2
In equation (iii) the highest derivative involved was the second [i ZQ] .
t

The equations (i) and (i1) are known as first-order differential equations,

equation (iii) being known as a second-order differential equation. We confine

our consideration to first-order equations.

The first-order differential equations considered are of two types, namely
(a) directly integrable,
(b) variables separable.

The ideas are developed by means of examples.
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(a) Directly integrable Variables other than x

and ¢ may be involved
e.g. %%'= fy).

These equations are of the form ;E = (7).
¢

Example 9.1

The gradient of a curve at the point (x, y) is 4x’ + 2 Find y in terms of x.
X

Now the gradient is % so that

£1Z=4x3 -l—z.
dx

X

To find y we require an expression which when differentiated with respect ot x

gives 4x’ + g

x
d 2
Then Y4z
dx X
may be rewritten as
y= J[lej +gjdx
X
giving y=x"+2In| x| +k,
where k 1s a constant. ¢))

(1) is known as the general solution of the differential equation, general

because it involves an arbitrary constant k.

Two points arise out of Example 9.1. The first relates to the general method,

namely that

if & = /)
then y = If(x)dx,

or equivalent statements

)

mvolving other variables.

The second point is that during the integration shown in (I) an unknown

arbitrary constant of integration & (say) appears.

To assign a value to k, we require additional information.
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Example 9.2
Find an expression for y(x) given that

Y =2e™ -1
dx

and that y = 3 when x = 0.

Applying (D) to
% =2e" -1,

we obtain y = '[(2e_'Y —1)dx

so that y=-2e" —x+k. ()

Substitution of x =0, y = 3 into (1) determines the value of £.
s 3=-2e" -0+k
L k=3+2e"=5.

X

Substitution of this value for £ into (1) gives y =—-2¢™ —x+5.

Example 9.3

The cost of manufacturing x items is ¢(x) pence. Assuming that the marginal
de . 3000 .

cost — i and ¢ = 50 when x = 0 (fixed cost), find an expression

S._—_
dr  (x+100)°

for c(x). How much does it cost to manufacture 100 items?

de 3000
Now —=—"T—_
dxr  (x+100)°
3000
sothat c¢= —dx
(x +100)?
c:_3000+k, (1)
x +100

where k Is a constant.

Substitution of x = 0, ¢ = 50 into (1) gives
~ —3000 Tk

50 =
100
Sk =80.

Substitution of the value of & into (1) gives

c= — 3000 +80.
x+100

The cost of manufacturing 100 items is
—3000

¢ =———+80 = 65 pence.
100+100
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Exercises 9.1
State whether the following differential equations are directly integrable. Find

the general solutions of those equations which are directly integrable.

dy dy dx .
a) — = 1+ b) — = c) — = tsint
(a) » x (b) i () 4

dx
d) — = xsinx €) — = xsint.

@ dt ) dt
Find the solution of
%:4cos2t,

dt
given that x = 1 when ¢t = 0.

The gradient of a curve at a point (x, ¥) is xInx. Given that y =2 when x = 1,
find y in terms of x.
The cost of manufacturing x items is ¢(x) pence. Assuming that the marginal

cost % is 3x2 —12x +15 pence and ¢ = 50 when x = 0 (fixed costs) find an

expression for ¢(x). How much does it cost to manufacture 10 items?

Find the equations of the following curves:

(a) A curve passing through the point (0, —2) and ¢* % =1.

. . d .
(b) A curve passing through the point [g,O] and Ey =sinx—x.

(c) A curve passing through the point (n, 1) whose gradient at the point

(x,») 1s xcosx.

(b) Variables Separable

Here we consider equations of the form

& _ 1)
d  g(y)
. dy
or equivalently, g(y)a = f(x),

where f(x), g(y) depend upon x and y only, Some equations

may involve other

ti . Tt ence of suc tions is tha :
respectively. The essence of such equations i t variables, of course.

the x and y variables may be separated — hence the

designation variables separable.

g(¥) = 1. This
equation is also
directly integrable.

Examples of such equations are

b _osnx b b
dx dx

dx  cosy’

101



Differential Equations

Before solving such equations, we establish a result that will be required in the

solution.

Preliminary result

Let’s suppose y depends upon x and we differentiate sin y with respect to x.

d . d . d
Then —(siny) = —(sin y) & function of a
dx dy dx function rule
so that i(sin ) = cos d_y (1)
A Y
Let’s integrate (1) with respect to x. Integration
d dy reverses
J‘a (siny)dx = J‘cos ya dx differentiation
. dy
siny = |cosy—dx.
y = [cosy "

No constant
of integration is
involved here

Reversing this result, we write

Icos)zd—ydx = sin y.
dx

!

Since J‘cos y dy =smmy,

|

dy
we see that cosy—dx = [cosy dy.
J‘ y Ir J‘ y ay
dy .
In effect, o dx has been written as dy.

More generally,

kw%m—k@w}<m

Result (IT) will enable us to solve equations of variable separable form.

Thus dy _ 1)
e g(y)
gives g(y)% = f(x).

Integrate both sides with respect to x.
d
[e =2 dr = [ fx) dx.
dx
Using result (I1), we have

[s(dy =] fx) dx. (1)

In words, result (I1I) states that:
(i) separate x and y,

(i1) integrate the resulting expressions with respect to x and y.
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Example 9.4

Solve the differential equation
Yy _=x
dx y

given that when x =1, y =2.

Using result (III), we obtain The variables are separable,
.l-ydy — dex f(x)_x’g(y)_y'

2 2
yo x Whatever the form of a
so that 7 = 7 + K, (1) first order differential
equation, the solution
always contains one

where K is an arbitrary constant of integration.

[An aside: note that only one constant of integration is required although two

integrations have been performed; because

2
X

S S
2 1 2 2
32 2
— =—+(-C
2 2 2 1
and C, — € may be regarded as a single constant XK.

gives

K; =2K. Such
multiplication is
not necessary but
Qs convenient.

We multiply (1) throughout by 2 to clear the fractions
: y2 = x2+K (2
Now (2) contains an unknown constant.

Substitution of x = 1, y = 2 into (2) gives

22 = 12+K,
so that K =22-12 =3
Substituting this value for K into (2), we obtain
),2 = x2+3,

which is the required relation between x and y.

Example 9.5

dy y .
Solve =— = —— giventhat y =1 whenx = 0.
dx 1+ x

Result (I11) gives
jl@:jl dr.

Y b Write K = In 4
Injy| =Iln|l+x|+K for convenience
=In|l+x|+Ind
so that In[y|] =In(4]|1+x]),

on combining logs.
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Then eln]y] = elnd|l+x]
ot B = A L+x], () of logs
We assume y > 0 and x + 1 > 0 so that (1) may be
written

y = A(x+1). e
Since y =1 when x = 0,

1 = A4A0+1).
giving 4 = 1.

Substituting this value for 4 in (1), we obtain
y =(x+1).

Variables-separable differential equations occur in many subjects.

Example 9.6

The amount of uranium m(¢) at time ¢ contained in a lump of matter decreases
with time. [t is assumed that the rate of decrease of m(#) at time ¢ is
proportional to the value of m(?).

Write down a differential equation for m(¥).

Attime t = 0, m(t) = mg. If the amount of m(z) is halved over a time period 7,

find an expression for m() in terms of m( and ¢.

Now m(t) decreases with time and the rate of decrease at time ¢ is proportional

to m(?).

dm
— = —km, k>0
py 7 (k>0)

where & is an unknown constant of proportionality.

Separating variables, we obtain The modulus is
dm not used in In |m|
— =[—kde because m > 0.
m
Inm(t) = —kt+C,

where C is a constant.

Then elnm{t) = -kt +C
so that m(t) = e eC.
‘ m(t) = Ae k. (N

This is the general solution. We are able to find the constant 4 because

m = my when ¢ = 0.
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Substitution of these values in (1) gives
my = Ael
so that 4 = my.
Substituting this value for 4 in (1), we obtain
m(t) = mge™K. )
Up until now the proportionality constant £ has not been specified. We have

some additional information which we use as follows.
1
Now m = Emo when (=T.

Substitution of these values in (2) gives

1

- = ~kT
mg = mge

2 0 0

so that ekl = l
2
Take logs .. —kT'=In 1
or kT = In2.
In2
k= —.
T

Substitution for k& in (2) gives

In2)t
_ T multiplication of
t = e oy .
m(®) o ¢ 1t indices. Notice the
= m (em) T =my2 T u.zefnf\;lnfssaof
NN

St

m(t) = mo{%j

Let P(¢) be the proportion of a population at time ¢ that has been infected with

Example 9.7

a disease. It is assumed that the rate of change of P(¢) 1s ¥P(1 — P), where r is
a constant. Write down a differential equation satisfied by P and find the
general solution of this equation.

Find P(¢) in terms of r and ¢ if P = 0.01 when t = 0.

d_P rP(1 - P). Variables
dt separable type

Il

Then JL = J‘rdt. (1)
P1-P)
To find the left hand integral in (1) we use two linear factors
. . in denominator
partial fractions.
1 A B
Let _— = ——,
P-P) P 1-P
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s 1

LetP=0, .. 1

so that A

LetP=1, 1

so that B
1

P-P)

= A(1 - P) + BP.
= A(1-0)+ B0
= 1.

= A(0) + B

= L
1

1-P

1
—+
P

Then using (2) in (1), we obtain

1 1
5 its)
In|{P|-In|1-P]|
7

In

1-P

P
e‘"ﬁ'

Now 0 < P <1 so that

Then (3) becomes

and P()

This 1s the general solution.

=+ K.

=rt+K

=rt+ K.

= ot +K = o1t oK = Aert.

= Aelt
_ P
1-P
= Aeit
= A(l - P)e*
4" 4
1+ de” e+ a4

[We note in passing that limP(t)=Oi = 1.]
[—>w

Now P =0.01 when = 0.

+ A

Substitution of these values in (4) gives

0.01

0.014 + 0.01

so that

_ 4
a4 A+T
=4
0.01 0.01 1

1-0.01 099 99

Substitution of this value for A in (4) gives

P()

g
_ %9 _ 1

—rt + [
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Exercises 9.2

Find the general solution of
dy

— = 4x3yl,

dx 7
Find y given that

d_y = ex+3y

dx

and that y =0 when x=0.

Find the general solution of

secxdl +secy = 0.
dx

Find the general solution of
dx y 1

Do not attempt to write the
solution in the form y = f{x).

The height of a tank 1s 9 metres and it 1s completely full of water. At¢= 0 the

water begins to leak from a hole in the bottom of the tank. If the depth of the

water at time ¢ seconds is x(¢) metres and
dx
100— = —+/x,
dr

find the time (in minutes) required to empty the tank.

In a chemical reaction the amount x(¢) of one substance at time ¢ is related to

the rate of change of x(¢) by the differential equation

e k(4 —x)(8 —x),
dt

where £ 1s a constant. If x =0 when ¢ = 0, express ¢ in terms of x and %.

Determine the value of & 1s 1t 1s known that x = 3.6 when ¢ = 2.

A curve passes through a point (1, 4) and its slope at the point (x, y) is 3 J
+ X

(x> 0). Find the equation of the curve for x > 0.
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Introduction to Vectors

Chapter 10

Introduction to Vectors

In this chapter and the next we consider quantities which require both size

{magnitude) and direction in their specification.

10.1 Vectors and scalars
Let’s consider the following situation: I walk 100 metres, stop, then walk
another 50 metres. How far am [ from my starting point? A little thought
would indicate that it’s impossible to answer this question except to say that
the answer lies between 50 and 150 metres. The diagram shows some of the

possible situations that could arise; S is the starting point, F the finishing

point.
F
sh
100 —»
57710 — s —=F  STTE0 57 100 —

Thus the question as posed is imprecise: we require more information
concerning the directions in which [ walk. In other words, to describe my final
displacement SF we must specify both the directions and magnitudes of the
two parts of my walk.

Quantities whose complete specifications involves both magnitude and
direction are known as vectors.

They are represented in text by bold type, my replacement vector from S to F
being denoted by SF, for example. When writing vectors you should

underline and write quantities such as SE.

Other examples of vectors are velocity, acceleration and
T 30 metres/second

is different from
1 30 metres/second

force (rugby players know the difference between being

pushed forwards and backwards in scrums, for

example).

Quantities whose complete specification involves only magnitude are called

scalars. Examples of scalars are area, volume and speed.

108



Introduction to Vectors

To make progress in dealing with vectors we require additional definitions and

some rules of manipulation.

Definitions

We represent a vector by an arrow, that is a straight line with an arrowhead on
it. The tail of the vector is placed at some starting point and the direction of
the arrow is chosen to be the same as the vector. Since this definition does not
mvolve position (only magnitude and direction), we can draw an infinite

number of lines to represent the vector v, three of which are shown.

2y

The size or magnitude of a vector v 1s called its modulus and is the length of

the hine representing the vector. It is represented by | v | or v.

length=|v|orv

It follows from Definition 1 that two vectors are equal if they have the same

magnitude and direction.

s

Then v =
because [v] = |w]

and the direction of v 1s the same as the direction of w.

The vector which has the same modulus as v but the opposite direction is

s/

The vector kv, where & is a real positive number, is a vector parallel to v of

denoted by —v.

magnitude £ | v | or kv. Thus 2v is parallel to v but is of magnitude 2 | v | or
2v.
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wd

The vector — /v (! real and positive) is a vector of magnitude / | v | with
direction opposite that of v. Thus — 3v has magnitude 3 | v | and direction

opposite that of v.

//

Given two real numbers & and / and a vector a,
k(la) = (klya = I(ka)

In particular, 3(2a)=6a=2(3a),
—4(5a) =-20a =5 (—4a).

The vector does
not have to be v.

When a vector b is multiphied by O (zero) we obtain a vector of zero
magnitude and no direction. We write this zero vector as
Ov=0.

The zero vector is drawn as e,

Exercises 10,1
Select the correct options in relation to the following statements concerning

the vectors shown.

N

'y

N

QM Yes No
(1) Isa=b? (i) a=0? (iii) b=g? (iv) b=-g?
(v) b=-lg where0<1<1? (vi) c=-d vii)(a]=]e?

(vill) e=3f (ix) h= %a?
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10.2 Addition and Subtraction of vectors and rules of manipulation

To understand how vectors can be combined we first

displacements are
directed distances

consider how displacements are combined.

Let’s suppose that 1 walk 30 metres to the east and then 40 metres to the north
west, starting at S and finishing at F, and passing through the point A as

shown.
F

]
{
! L E
; 45°

S 2 A 8

Now the two displacements SA and AF have both magnitude and direction
and may be regarded as vectors a and b, say. Representing the vectors as
shown we see that the displacement SA or a followed by AF or b gives a

resultant displacement SF.

Then we may regard the (displacement) vectors a
and b as being added, and if
SF = c then
c=a+b.

This addition is
different from the
usual arithmetic
+, of course.

This combining of displacements is an example of

the general triangle law of addition of vectors.

Triangular Law of Addition of Vectors

Suppose we have two vectors u and v as shown. The vectors are added by
placing the starting point of one vector (v say) next to the arrowhead of the
other vector (u) and completing the triangle with the dotted line as shown.

Since the vector u is drawn first (try it) the combination of vectors gives u + v.

(@) (if)

If we draw v first and then place the starting position of u next to the
arrowhead of v we obtain v + u as shown in (i1).
It is clear from (1) and (11) that
utv=v+u
so that the order in which the vectors are combined {or ‘added’) is

unimportant.
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N.B. An alternative essentially equivalent method of adding vectors known as

the parallelogram law of addition exists. We shall not introduce that method

here.

Example 10.1
Use the triangular law of addition in the following.

(1) Add the two vectors d and e.

€

RN c
'\
(i) Show(d+e)+f=d+ (e +1).

(1)

or

(i)

C
The arrows have
been moved for
et f convenience of
f drawing
A B
O

Now (d + e) + f means add d and e first, then add f to the result.
Also d + (e + f) means add e and f first, and add this result to d.

In the diagram,

OA+ AB=0B
and OB + BC=0C.
Also AB+BC=AC
and OA+AC=0C.

We see that (d + e) + fand d + (e + f) are both equal to OC so we conclude

that
(d+e)y+f=d+(e+{
and both these sums are equal to
d+e+f
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Subtraction of Vectors

We recall that —b is a vector which has the same magnitude as b but is in the

/ b
a

We define a — b as a + (~b). Then to find a — b we reverse the direction of b

and find a + (- b) as shown.

opposite direction.

—b

@ -~ = =

Example 10.2

Given the vectors ¢ and d as shown,

find
(i) é-c +2d (i) 2¢~ %d (i) 2d +d (iv) 3d-2d

3e

% c+2d
®
2d
gives 3d
d
(iii)
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Parts (iii) and (iv) illustrate the result that if m and » are any real numbers and

v 1s a vector then

mv +nv=(m+n)v ‘

In(iym=2,n=1,
m(ivym=3,n=-2
and v=d.

Example 10.3
Show that (i) 2(a + b) = 2a + 2b, where a and b are shown.

N

at+b

” 2h From the diagrams it may be
seen that 2(a + b) =2a + 2b.

2a+2b

Example 10.3 illustrates the general result that if m and are any real numbers,

a and b are any vectors, then

m(a+b)=ma+ mb. .

The addition and subtraction laws and the rules of manipulation given above

enable us to simplify expressions and solve equations involving vectors, as in

ordinary algebra.

Example 10.4
(1) Simplify 4(a+b)+6(b+c)~3(a—b +c).
(i1) Find the vector x given that
2a+6b+9x=8a—-4x-b.
(1) 4a+b)+6(b+c)-3(a-b+c)=4a+4b+06b+6c—3a+3b-3c
= a+ 13b + 3c.
(11) 2a+6b+9x=8a—-4x-b.
We use the familiar rules of algebra.
S 9x+4x = 8a—b-2a-06b
so that 13x = 6a—-"7b
and X = L(6a —7b).
13
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We conclude this section by applying vectors in geometrical situations.

Example 10.5

The vectors a= AB and b = AC from two sides of the triangle ABC. D is the

midpoint of the line BC. Find an expression for DA in terms of a and b.

A
a b
B D C
Now DA = DB-AB
= DB-a
1 1
Also DB = —CB=—(a-b)
2 2
Then DA = %(a—b)—a
1
= —a—l b-a
2 2
— (at+b)
5 .

Example 10.6

AC=CB=AB
soCB=AB-A

DB =DA + AB
from triangular law

The vectors a = AB and b = AC form two sides of the triangle ABC. M and N
are the midpoints of AB and AC respectively. Find expressions for MN and

BC. Deduce that MN is parallel to BC and find the ratio A;—g

A
M N
B C
Now BC = AC-AB
= b-a.
Also MN = AN-AM
= lAC - l AB
2 2
1 1

= —b——a=l(b—a).

2 2 2

M, N are
midpoints
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Thus MN = 1 BC so that MN is parallel to BC
2
and MN = %BC
MN 1
or —= =
BC 2

Exercises 10.2
By considering the diagram for the addition of two vectors, explain why
|la+b|<|a|+|b]|

What is the relation between a and b when equality occurs?

a and b are vectors determined by the two adjacent sites of a regular hexagon.

Find the vectors determined by the other sides of the hexagon.

A b E B
a
A\ 4
D F C

The rectangle ABCD is such that AEFD 1s a square and £B = 34E. If AD=a
and AE = Db, find EB, EC, DB, AC and FB in terms of a and b.

Four points O, 4, B and C are such that OA, OB, OC are a, b and ¢

respectively.

S . . 1
E is the midpoint of 4B and F is a point on £C such that £F 1s EEC.

C

Find expressions for the vectors AB, AC, AE and EF.
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5. O, 4, B, C and D are five points such that OA =a, OB =b, OC = a ~ 3b and
OD =4a +b. Find AB, BC, AD in terms of a and b.

6. Solve the following equations for the vector x.
(1) a+3b-2x=4b-a+3x

. 1 2
) —h=— = =
(u X+ 2a xta b

3 3

10.3 Position vectors
Up until now, the definition of a vector has not involved any
specification concerning position: vectors with the same
modulus and direction are equivalent, irrespective
of their positions. Occasionally, it 1s appropriate to use a more localised
definition and specify the starting position of a vector. In particular the
position vector of a point P relative to an origin represents in magnitude and

direction the line from O to P. Then OP is defined uniquely and cannot be

represented by any other line parallel to OP and having the same length.

P

0

The vsual rules of manipulation may be applied to position vectors.

Example 10.7

The points 4, B, C and D have position vectors a, b, ¢ and d relative to an
origin 0. The points £, F, G and H are the midpoints of 4B, BC, CD and AD,
respectively.

(a) Find the position vectors of £, F, G and H.

(b) Find the vectors EH and FG and deduce that EFGH is a parallelogram.

117



Introduction to Vectors

(a) The position vector of £ is OE (not shown)
and
OE =0A + AE
2 triangular law
Now AB =0B - OA
so that AB=b-a.

Substituting for AB in (1), we have
1 1
OE =a+ —(b-a)=—(a+h)
2( ) 2( )

We note in passing that the position vector of the midpoint of

AB 1s 5 (position vector of 4 + position vector of B), this being a

particular case of a more general result.

Similarly, OF = % (b+c), OG= —12— (c+d)

1

and OH :E(a+d)-
(b) EH = OH - OE
1 1 OH = OE +EH
= 5 (a+d) _E(a"_b) by triangular law.
ST TP
2 2 2 2
1
=—(d-b
2( )
Also FG =0G - OF

= (erd)=2 bro=2 @-b)

Then EH = FG
so that £H is parallel to FG
and EH =FG.

Thus, FFGH is a parallelogram as it has a pair of sides which are
parallel and of equal length.

In Example 10.7, we found the position vectors of the midpoints of various

lines. It is often helpful to have available an expression for the positive vector

of a point on a line joining two points whose position vectors are known.
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To find the point which divides the join of two points in a given ratio.

[ntroduction to Vectors

Let’s suppose that the points 4 and B have position vectors a and b and P is a
point that divides 4B such that 4P - PB = : .. Then the position vector of P

1s given by

P B
A

o

OP = OA+AP
so that OP = a+AP (1)
PB
so that 4P = s
AB A+
and AP = & AB. 2)
A+ L

AP
PB
AP

Then R
AB

If you don’t see how (2) 1s derived, read the following.

= . A gives AP = &PB

+ R f
- AP pp/tppyps
AP+ PB T
_ &PB/KPBWPB
R B
= &PB/@E(Xﬂ;)
0 1
_ A
A

(2) may be written in terms of vectors as

AP

Substitution for AP in (1) then gives
op

A

= AB =
A

A+u

(b-a).

= a+

b-a
7»+p( )

_ (+wat+i(b-a)
= T
ua+Ab
A
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Notes
1. Note that the pattern of the result and hence develop the ability to write

down the result immediately.

_ Ab+pa
A+

2. You may have found the derivation of this result somewhat drawn out.
You are advised to read the proof again and learn a compressed form of it.

In particular, you should write down
A

A+

AP = AB

immediately.

Example 10.8
The points 4, B, C and D have position vectors a, b, c and a +b — ¢ relative
to an origin O.

(a) Find the position vector of the point £ on the line AD such that

AE:ED=1:2.
(b) Find the position vector of the point F on 4B such that
AF:FB=1:2.

(c) Show that EF is parallel to DB.

(a)
F 2 D Using the result previously
4 ! derived
OE = 1I(OD)+2(0A)
1+2
(0] _ la+b-c)+2(a)
3
o 1
so that the position vector of £ is 3 (Ba+b-—c).
(b)
B OF - I(b) + 2a
1+2
1
= —(2a+Db).
3 ( )
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EF = OF-OE

F { 1
E = §(2a+b)—§(3a+b—c)
= %(2a+b-3a-b+c)
0 1
= E(C‘a)
Similarly, bB = OB-0OD
= b-(a+b-¢)
= b-a-b+tc
= ¢—a
Thus EF = %BD

so that EF is parallel to DB.

Exercises 10.3

A, B, C and D are points with position vectors a, b, ¢ and 2a — b - ¢
respectively.
(a) Find the position vector of the midpoint of BD.

(b) Find the position vector of a point E on AD such that
AEED = 3:2.

(c) Find the position vector of the point E on 4B produced such that
AE = 34B.

A, B and C have position vectors a, b and c relative to an origin O. The
midpoints of 04, OB, CA and CB are D, E F and G, respectively. Show by
finding their position vectors, that the midpoints of DG and EF coincide, i.e.

are the same point.

The vertices 4, B, C and D of a parallelogram ABCD have position vectors a,
b, ¢ and d, respectively. Show that
d=a+c-b.
The points E, F lie on AC and 4B, respectively where
AE EC = 1:3 and AF:FB = 1:2.
(a) Find the position vectors of £ and F.

(b) Show that D, £ and F lie on a straight line.
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The vertices 4, B and C of a triangle have position vectors a, b and ¢

respectively. The point D lies on BC such that
CD:DB = 2:1.
(a) Find the position vector of D.

(b) Show that the point £ with position vector
la+£b+gc
7 7 1

lies on AD and find AE : ED.

Two-dimensional and three-dimensional vectors
We consider two non-parallel vectors a and b (not necessarily localised) as
shown. Then any vectors ¢ as shown which lies in the plane containing a and b

may be represented as a sum of linear multiples of a and b.

¢=/a+mb,

where [ and m are real numbers.

A little thought and trial and error should convince you that this expressing of

¢ in terms of a and b may be achieved in only one way.

Any vector in the plane of non-parallel vectors of a and b may

be represented uniquely as a sum of scalar multiples of a and b.

Example 10.9

Suppose a and b are two non-parallel vectors and 4a +/b =ma — 2b, (1)
where [ and m are real numbers.

The left hand and right hand sides of (1) are representation of a vector in terms
of a and b. Since the representation is unique the coefficients of a and b on

the left and right sides must be equal.
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4 = m,
[ = -2

The uniqueness of representation of a vector in

This discussion has been
drawn out. Once you’ve
understood, the discussion
may be shortened.

terms of non-parallel vectors 1s very useful in

problems.

Example 10.10
The points D and E are the midpoints of the sides 4C and BC respectively of
triangle ABC. The lines AE and BD intersect at the point G. By first taking

vectors AB = b and AC = ¢, show that DG = %DB and £EG = éEA.

C

A b » B

We take the vectors b and c¢ as suggested. Our strategy 1s to find two
expressions for the position vector of G (relative to A4).
First, let’s consider G as a point on AE. Then if AG : AE =X : 1 the position

vector of G relative to 4 is

AG LAE E
= MAB +BE) AAB

= ib+ ABE
2
= kb+&(c—b)
2
A
so that AG = E(b+c). (1)

Secondly, let’s consider G as a point on BD and let DG : GB=p : 1 — .

Then position vector of G (on BD) is

HAB +(1-wAD
pL+1—p -

LAB + (1 — n)AD

= pb+(1—u)%AC b

1
AG = ub+5(l—u)c (2)
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Equating the two expressions for AG in(1) and (2), we obtain
&b+&c: ub + l—”—l C.
2 2 2 2

Since b and ¢ are non-parallel vectors,

(b) 2 =H, 3 The argument
2 given in Ex 10.9 has
Al o been shortened.
c —=——— 4
(©) 5575 4)

Solve (3) and (4) for A and n. Equating % from (3) and (4), we have

1 u
L = ——=.
g 2 2
B 1
2 2
_ !
= 3
2
Then from (3), A = 3
Thus DG :DB = p:]:%:1:1:3
1
DG=— DB
3
2 1
and EG:AE = 1-A:1=1—-—=:1==:1lorl:3
3 3
EG=— EA

When a vector d is such that it does not lie mn the plane of the vectors a and b

it cannot be represented as a sum of multiples of a and b.

d is not contained in
the plane containing
a and b so that

d #la + mb.

Crudely speaking, if we are confined to movements along the a and b
directions we shall be confined to the plane containing a and b. To move out
of this plane we require a movement parallel to a vector ¢ (say) not contained

in the plane of a and b.
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OP =la+mb +nc

It is convenient to consider the vectors as displacement vectors as shown.
Then the displacement may be achieved by making
(i) amovement along OA (/a),

(1) a movement along AB (mb),
and (1) amovement along BP (nc).
Then OP =/a+ mb + nc).

We ask you to accept that this representation is unique.

Any vector d may be represented uniquely in terms of

non-coplanar
means not lying
in the same plane!

three non-parallel, non-coplanar vectors a, b, ¢ as
d =]la+ mb + nc,

where [ m, n are real numbers.

The uniqueness of the representation is important.

Example 10.11
Given three non-parallel non-coplanar vectors a, b and ¢ and
3a+pb+4ec = ga+3b+re,

then by the arguments similar to those given in Example 10.9, we have

g = 3
p = 3
r = 4.

Example 10.12

The points 4, B, C, D have position vectors a, b, ¢, d, where a, b, ¢, are non-

parallel, non-coplanar vectors. Given that ABCD is a parallelogram, show that
d = a+c-bh

E 1s the midpoint of A8 and the line DE intersects AC at F.

Show that AF:AC = 1:3

and DF:DE= 2:3.
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The position vector of D is given by
oD OA +AD
= 0OA+BC
= a+0C-0B
= atc-b.

Il

The strategy for the remainder of this question is to find two expressions for

OF and equate them.

Let AF :AC = A:1,
DF:DE= u:1.
Since F lies on AC,
OF OA + AF
OA + AC
athi(c—a)
(1-X)a+ec. (1)

Il

Il

Il

so that OF

Similarly, since £ lies on DE,
OF = OD+DF

= d+ uDE
= d+ i (OE - OD)
= d+ pOE - nuOD

d{l—-wt+p %(a%—b)

nooH
ate-b)(l-puy+r=a+=>b
( W —pr—a+s

a[l-%)+[325-1]b+(1—u)c ©)

Equate expressions in (1) and (2) for OF.

il

so that OF

(1-Mathe = a(l—%}t(%—ljbnt(lﬂp)c 3)
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Since a, b and ¢ are non-parallel, non-coplanar vectors:

- =1-8 (4) (a)
2
0= A1, (5) )
2
A= 1-p (6) (c)
) 2 1 2 )
(5) gives L= 3 and A = 3’ Q= 3 satisfies (4) and (6).
Then AF:AC = A1 :%:1
2

and DF:DE = wu:l 25:1
or AF:AC = 1:3 and DF:DE = 2:3.

Exercises 10.4

Four points 4, B, C, D have position vectors a, b, ¢, a + b — ¢ relative to an

origin, respectively. The lines AB and CD intersect at E. You may assume

that a, b, ¢ are non-parallel coplanar vectors.

(1) Given that AE : AB =% : 1 and CE : CD = p : 1, write down two
expressions for OE.

(i)  Find OE.

In the parallelogram ABCD the points 4, B, C, D have position vectors a, b, ¢,
a + ¢ — b, respectively, where a, b, ¢ are non-parallel non coplanar vectors. M
is the midpoint of BC and N is the midpoint of CD.

The lines AM and BN intersect at the point P. Given that AP : AM = A: 1 and
BP:BN=p:1,find

(a) two expressions for the position vector of P,

(b) the position vector of P.

The points 4, B, C and D have position vectors a, b, ¢ and 2a — 2b + ¢
respectively, where a, b and ¢ are non-parallel non-coplanar vectors. The lines

AC and BD intersect at P. Show that P has position vector

2 1
—a+—c.
3 3

The points 4, B and C have position vectors a, b and —2a + b relative to an
origin O, where a and b are non-parallel vectors. L is the midpoint of OA.

Find the position vector of the point where BL intersects AC.
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10.5 Cartesian components of vectors
In Section 10.4, we showed that any vector could be represented in terms of
three non-parallel, non-coplanar vectors a, b and ¢. A particular choice of the
vectors a, b and ¢ simplifies calculations.
Let’s introduce a three-dimensional Cartesian frame of reference consisting of
a fixed point O, the origin and three mutually perpendicular axes Ox, Oy and
Oz.

T screw moves in
this direction

y

rotation in
this sense

The arrangements of axes for a right-handed set of axes is that if we screw
along the positive z-axis, the thumb rotates from the positive x-axis to the

positive y-axis.

Then unit vectors i, j, k are taken parallel to Ox, Oy Each of magnitude
and Oz axes respectively. 1, of course
Then a vector /' may be written in the form

F=FitFj+Fk, w

where F i, Fj, F K are its components parallel to the

Ox, Oy, Oz axes.

Fyi sz/
P

x/ Fj

The vector F may be a line OP where P has coordinates (F,, F,, F)
relative to O.

Note that the vector F may not be localised. In that case the directions of the
axes are important but their location in space is not important.

For localised vectors, the location of the axes is important.

The unit vectors i, j, k are non-parallel and non-coplanar; and therefore the

representation of a vector in terms of them is unique.
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Example 10.13
Given ai+bj+ck=3i—j+4k
then a«=3, b=-1, c=4.

Modulus of a vector

The modulus of the vector
F=Fi+Fj+Fk

is represented by the length of the line OP where P is the point (F,, F , F,).
Then

A double application
of Pythagoras’ Theorem
gives this result.

Example 10.14
The modulus of 3i — 2j — 4k is /3% +(=2)7 +(=4)°
=+49+4+16 = @ .

Note that -2, —4
are squared and
give 4 and 16.

The formula for modulus may be applied to find the modulus of the algebraic

sum of a number of vectors.

Example 10.15

Given a = 3i+2j-2k,
b = 6i-2j+Kk,
¢ = 2i+j-3k

find | 2a - 3b + ¢|.

We first find 2a — 3b + c.

Then 2a - 3b+¢ = 2(3i+2j - 2K) - 3(6i ~ 2j + k) + 2i + j - 3k
(6-18+2)i+(4+6+1)j+(—4—-3-3)k
~10i+ 11j - 10k.

Then [2a — 3b + ¢| = /(~=10)7 +11 +(-10)” =+/321.

add the
i, j, k parts
separately

i

Il

Given a vector in Cartesian form it 1s straightforward to find a vector of any

given magnitude parallel to the given vector.
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Example 10.16
Given a vector a = 3i + 4j + 2k, find
1) a unit vector parallel to a,

(i1) a vector of magnitude 14 parallel to a.

() Now |a| = +/37+47+27 =429

Then a unit vector parallel to a is ka where k| a|=1.
1

|a|

", a unit vector parallel to a is
a

1
L= (3 +4j+2k)
la| 2o O
3 ., 4 2
i+—j+

or —— j+—k.
V29 V297 V29

N.B. It’s worthwhile

, a
remembering that —
|a|
1s a unit vector
parallel to a.

(ii) A vector parallel to a of magnitude 14 is ka where k| a | = 14.
14

EY

Then the required vector is

18 _ 1% 5iv4+2K)

lal 29

or 42 i+—56 j+—28 k
V29 V297 29
The distance between two points in three- 24P, P
dimensional space may be considered as the
modulus of a vector. The points P,(x,, ¥, z;) and ¥y

Py(x,, y,, z,) may be regarded as being at the arrow
heads of two position vectors OP,, OP, so that

OP, = xjityj+zk,
OP, = x,1 +y,j +z,k,

and PP,= OP,-OP, = (x, —x)i + (y, = »,)j + (z; — zy)k.

Then  |[PP,|= /(x, -5, + (3 —3,)  +(z,-2,)".

This formula may be used immediately to find the distance between two

points.
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Example 10.17
Find the distance between the points (1, 2, =3) and (-2, 1, —4)

Then distance = \Rl (-2’ +2-1)* +(-3-(-4))’

=32 412 +12 =411,

Exercises 10.5

Find the resultant vectors and their magnitudes in (i) and (ii), given that
a=2i-3j+k, b=-3i+2j-3k, c=it+k

1 atb+ec

(i1) a—2b +3c.

Find unit vectors parallel to

ey itjt+k
(i)  2i+j
(iii)  Si.
Given that

2ai +3(a+b)j+2a-b+ o)k = (2 +a)i +4bj+ (3c— 2k,

find the values of @, b and c.

Find the distances between the following pairs of points:
(0, 1,-1), (2,-1,-2); (0,-1,1), (-3,—4,-5).
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Chapter 11

More on Vectors

In the first part of this chapter vector methods are used to find the equations of straight

lines. Later, a method of combining two vectors to produce a scalar is considered.

11.1 The vector equation of a straight line

A line in three-dimensional space may be specified in one of two ways,

namely
(1) where the line is specified as passing through a given point in a
given direction,
or (ii) where the line is specified as passing through two given points.
(1) Line of known direction passing through a given point

Here the line passes through the point A having position vector a, and is
parallel to the vector b.

Let’s find the position vector of a general point P on the line.

Now r = OA+ AP,

or r = a+AP. (1)

The vector AP is parallel to the vector b and is therefore of the form Ab, where
A is some real number. Then the equation(1) may be converted into
r = ataib. (2)
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(2) 1s called the vector equation of the line; as & varies in (2) various points on

the line will be obtained.

The equation (2) may be expressed in Cartesian form.
Then if r = xi+yj+zk,

i

a a,i + a) + a.k,

b+ b,j + bk,

If

(2) may be written
xityj+zk = gi+aj+ak+bi+bj+ bk)
(a, +Ab)i+ (a, + Rby)j + (as+ Aby)k.

Il

so that xi+yj+:zk

Then considering the terms in i, j, kK, we obtain
x = a, +Aib,
y = a,+Ab,, 3)
and z = a; Ab;.

(3) are called the parametric equations of the line. When X is eliminated from

each of the three equations in (3), we obtain

X—a, y-a, ZI-d,
b, b, b,

Find the vector form and Cartesian form of the equation passing
through (1, 2, —4) which 1s parallel to the vector 4i ~ 2j + 3k.

Example 11.1

The point (1, 2, —4) has position vector i + 2j — 4K.
Then the vector equation of the line is
r = i+2j-4k+i(4i-2j+3k)
= (1 +40i+ 2 -20j+ (-4 +30)k.

The Cartesian forms of the equations of the straight line are

x = 1+4r
y = 2-2A

and z = -4+3%

or x—lzy—2:Z+4_
4 -2 3
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(i1) Line passing through two known points

Here the line passes through the points 4 and B having position vectors a and
b, respectively. Let’s find an expression for the position vector r of some

general point P on the line 4B.

Then r

or r

OA + AP
a+AP. (4)

I

I

Now AP is parallel to the vector AB so that
AP= AAB,

where A 1s some real number.

Also AB= b-a
so that AP= (b -a). (5)

Substitution from (5) into (4) gives
r = a+Mb-a) 6)

(6) is the equation of the straight line; various points on the line are produced
as A varies. The Cartesian form of the equation is easily found from (6). Then
if

-
Il

xi+yj +zk,

Il

ai+a,j+ak,
and b = bithj+bk,

are substituted into (5), we have
xi+tyj+zk = ai+ajtrak+Abi+b,j+bk-—ai-aj—ak).

Consideration of the terms in i, j and k then give
x =2+ Ab—a),
v = a,+Mb—a,), @)

and z = a; + Mby— as).
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Example 11.2
Find the vector form of the equation of the straight line passing through the
points (1, -1, -2) and (-1, 1, =3).

The position vectors are

a = i—j-2k,

b = —i+j-3k
so that the vector form of the line is

r = i—j-2Kk+r[-i+j-3k—(i—j-2Kk)]
or xi+tyi+zk = i—j-2k+2A[-2i+2j-k].

It is useful to look again at the vector equations of the straight lines.
Case (1)
r = a-+Aib.

Case (il)
r = at+Ai(b—a).

In the case (i), the direction of the line is parallel to the vector b;

in case (ii) the direction of the line is parallel to the vector b — a.

In both cases (1) and (i1) the direction of the line is

r=a+2Ab,

given by the terms in A. r=a+Ab-a)

Example 11.3

(a) Find the equation of the line which is parallel to the line passing through
the points 4 (4, =3, 11) and B (2, 1, 5) and which passes through the
point C' (-1, 1, 3).

(b) Find a unit vector parallel to the straight line found in (a).

(a) The position vectors a and b are
a 4i—3j+ 11Kk, v-8
b

c
2i+j+ 5k ’K’
Then b-a = -2i+4j-6k o

The equation of the straight line is

Il

r = —i+j+3k+A-2i+4j-6k). (1)
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(b) The direction of the straight line in (a) is given by the term in A, i.e. by
the vector — 2i + 4j — 6k. The magnitude of this vector is
J(=2)? +47 +(=6)> =456,
Thus, the unit vector parallel to the given line is

1
—_(-2i+4j-6Kk)
V56

. 1
which reducesto  —(—i+2j-3Kk).

N

V56 =J4x14
=214

When the equations of two lines are known their point of intersection is

easily found (if it exists).

Example 11.4

Given the vector equations of two lines as
r = i+tj+tk+A2i-3j-k),
r = 2i—j+2k+puGit+j-18k),

find their point of intersection.

Note that different
parameters A and
u must be used to

define the lines.

The position vector of the point of intersection must satisfy the equations of
both lines. Then equating the expressions for r, we have
itj+rk+A2i-3j-k) =2i—j+2k+pGit+j—18k)

Then matching the terms in i, j, k, we have

1+20 = 2+3p, (1)

Only two equations
1-3% = -1+pn () are required to find
1 =X = 2-18u 3) two values, of

course!

If the points intersect the two parameters A and p must

satisfy the three equations (1), (2), (3).

From (1) and(2),
2A—3u = (H
3+ = 2 (2)

These may be solved in the usual way to give

7 1
==, ——. (4
11 TR

(1) +3x(2),
for example

Substitution of the values of A and p given in (4) into (3) shows that these
values satisfy (3):

1-» = 2-18u
! !
[T 4 , 18 4
11 11 11 11
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Thus A= lll’u = %, satisfy (1), (2) and (3) which demonstrates that the lines

mtersect. The position vector of the point may be found by either substituting

X:% mr=i+j+k+i2i-3j-k),
oo 1.
or substituting uzl-l— mr=2i-j+2k+u@Gi+j-18k).

The first gives r = i+j+k+1—71(2i~3j«k)
2

2,000, 4

1 11" 1n

You are asked to check that the same position vector is obtained after

i

. 1.
substitution of p = I in the second case.

Example 11.5
Show that the lines given by the vector equations
r = 2i+j-k+Ali+j+ k),
ro= 3i-j+rk+puli+3ji-k)
do not intersect.
We assume that the point of intersection exists, i.e. the lines intersect.

Equating the expressions for r, we have
2itj-k+a(it+j+k) Ji—jrk+u2i+3j-k)

i

so that 2+k = 3+24, (D
1+A = ~1+3p, (2)
-1+x = 1-p (3)

The values A and p will satisfy (1), (2}, (3) if the lines intersect.

From (1) and (2),
A=2pn = 1, (1)
A-=3u = -2 2)

Subtraction of (2) from (1) gives
p o= 3

and substitution in (1) or (2) gives
o= 7

Substitution of these values in (3) leads to
-1+7 #* 1-3
left hand side right hand side
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so that the derived values of A and 1 do not satisfy the third equation. In other
words, there are no values of A and p satisfying the three equations (1), (2),

(3). We conclude that the lines do not intersect.

The point of intersection of two lines may be found even if the unit vectors i, j,

k are not used.

Example 11.6
Find the position vector of the point of intersection of the lines given by
r = at+Aibandr=2a+b+ pb-a)

where a and b are non-parallel vectors.

At the point of intersection,
atib = 2a+b+pnb-1)
atib = (2-pa+(1+ub.
Since a and b are non-parallel vectors,
I = 2-pu, (D a terms,
A 1+ 2) b terms.

I

(1) gives immediately 1t = 1 and substitution into (2) gives A = 2.

The point of intersection is
atib = a+2b.

or use i =1 in the
second equation

Example 11.7

a, b and ¢ are three non-parallel, non-coplanar vectors. Show that the lines
r = 2at+tMa+b+c),
r = a+2b+uc

do not intersect.

We attempt to find the point of intersection by equating the position vectors.

2atAat+b+c) = a+t2b+tuc (1)

Equating coefficients of the non-parallel, non-coplanar vectors, we have

2+A = 1, 2)
A= 2, 3)
o= L (4)

From (2), A = —1 which is contradicted by A =2 from (3).
Thus we cannot find values of and i satisfying (2), (3), (4). We conclude that

the lines do not intersect.
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Exercises 11.1

Find the vector forms of the lines which pass through the given point and
which are parallel to the given direction.

(a) (2,1, 1); directioni—j—k (b) (1, -1, 0); direction 3i + 2j + k

(c) (0,1, 0); directioni+j+k (d) (0,0,0); direction 3i + j + k.

Find the vector equations of the lines passing through the points 4 and B.

(a) A(1,1,-3) B(2,0,3)

(b)  A(1, 1, 1) B(3,1,-2)
(C)  4(0,0,0) B(5,-3, 1)
d) A42,1,0) B(-2,3, 1)

State whether the following pairs of lines are parallel.
(a) r =i+tj+k+Ar2i-4j+06k)

r= ij+u[%i—j+%]k

(b) r = 2i j-k+ (4i—2j+6k)
1
r=itpli-—jIk
i-gink

Find the vector equation of a line passing through the point i + j + k which is

parallel to the straight line given by r =i + A(2i - j).

Determine whether the following pairs of lines intersect.
(a) r=06i+j-3k+r2i+tj-k)
r=i+tpli—-j-—k)
b r=2i—-j-k+xri+j)
r = +uk
(¢) r=at+tb-2c+Ai(a+b-+ec),
r = b+p2a-b+e),

where a, b, ¢ are non-parallel, non-coplanar vectors.

The scalar product of two vectors

Up until now we have defined essentially two algebraic operations, namely
addition (or subtraction) of vectors and multiplication of a vector by a real
number (or scalar).

Other operations involving vectors exist which are important in Applied

Mathematics. One such operation is the scalar product or dot product. We

shall use the name scalar product in the following.
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Scalar Product

Suppose two vectors a and b are as shown, where 8 is the angle between them.

b

)

The scalar product of a and b is defined as
a.b =|a||b]cos®.

The following points are emphasised in relation to this definition.

(a) Care should be taken to ensure that the dot between the vectors a and
b is made clear.

(b) The scalar product is referred to as a dot b, hence the alternative
name the dot product.

(c) The product a . b is a scalar so that, as the name suggests, the scalar
product combines two vectors to produce a scalar.

(d) The scalar product depends upon the magnitudes of a and b and the

cosine of the angle between them.
Example 11.8

The coplanar vectors a, b and ¢ have magnitudes 3, 4, S respectively and are as

shown.

Finda.b, b.¢, c.a, a.a, b.bandc.c.

Now|a|[=3, |b| =4, | c|=5(given). the angle between
Then a.b | al|b]cos30° a and b is 30°

NG

= 3x4x—
2
= 63
b.c = 4><5><l.
2
= 10.
c.a =|c||a]cos90°
=5 x3x0=0.
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Now a.a = |a]|a|cos(angle between a and a)

= 3x3xcos0

=9
similarly, b. b= |b||b|cosO
=4x4x1
= 16;
and ¢.c =|cl|c|cosO
=5x5x1
= 25.

Example 11.9
Two vectors a and b are such that
a.b = o0and|a|=5,|bh|=3.

Find the angle between the vectors a and b.

Now a.b =]a||b]cos®. b
6 = 5x%x3cosB 0
so that cos0 = %:2 —a_/

54
6 = cos"(%} =66.4°
5

In Example 11.8, we saw that
— [
c.a =0 90°

because the vectors ¢ and a are perpendicular to each other A
and

cos 90° = 0.

The above illustrates the following rule for testing whether two vectors are

perpendicular.

Test for Perpendicularity

If|a]=0,{b|#0anda.b=0thena and b are perpendicular vectors.

The converse of this text 1s:

Ifa.b=0,then|a|=0,|b|=0 orthe vectors are perpendicular vectors.
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Example 11.8 also showed that

a.a = |al,
b.b = |b[,
c.c = |bf,

The general rule is:

The scalar product of a vector with itself is the square of the magnitude of

the vector.

Example 11.10
The unit vectors i, j, k are naturally perpendicular.
Findi.i, i.j, i.k, j.j, j. k, k.k

These results are important and are therefore displayed.

Now i.io= |if=1=1,
since i is a unit vector.
Similarly, Jj.j = 1,

k. k= 1.

] 1 x1 cos90°=0.
Similarly, j.k = 0,
i.k = 0.

Now i.

There are a number of properties of the scalar product which are important.

The Commutative Law

a.b = b.a
J unimportant.
or |[a]|b|cos® = |b||a]|cos®.
The Distributive Law
For three vectors,
a.(bb+tc) = a.b+a.c

Before proving the result, we define the projection of a vector onto a line. If
the vector b makes an angle 8 with a direction OX then

| b | cos @ 1s the projection of the vector b onto OX.

b

0\

o X
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Also if the vector a is directed along OX, then b
a.b la||b|cos® Lée

= [a|x(|b|cos®)

= |al|x projection of b onto a

or a.b = |a||b]cosB
= |b||a|cosB
= |b|x(la|cos®)

| b | x projection of a onto b.

We prove a.(b+c¢)=a.b + a.c by considering the projection of the

various vectors shown in the diagram.

Note that OL

Il

projection of ¢ onto a,

LM = projection of b onto a,
OM = projection of b + ¢ onto a.
Then a.(b+¢) = |a|x (projection of b + ¢ onto a)
= |a|xOM
= Ja|(OL+LM)

= [a|(OL)+|a| (M)
= | a| (projection of b onto a) + | a | (projection of ¢ onto a)
= a.b+a.c

Thus a.(b+¢) = a.b+a.c.

Example 11.11
Given coplanar vectors a, b and ¢ as shown with [a |=3,|b|=4,|¢c|=2,
finda. (b +c¢).

b

30°

30°
a

a.b+ta.c
3x4xcos30°+3x2xcos 60°

Now a.(b+ec)

3 x4 ><£—4—3><2><l
2 2

6+/3 + 3.
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Scaling Law
It can be shown (but we shall not do so here) that

la.mb = Im(a.b),

where [ m are two real numbers.

Example 11.12

Evaluate the following scalar products.

(a) 6i.3j (b) 2i.—-4i

(¢) a,i(bji+ b)) (d) (a,i+a,j).(bji+ b))

(a) 6i.3j=6x3(.j) =18x0=0.

(b) 2i.—4i=2x-4(1.i)=-8x1=-8

(¢) aijiJbi+b,j)=aibi+aib,j=abiitabij=ab,
(@) (ai+ayj). i+ b))

(ai+a,j).bji+(ai+aj). b Distributive law

Scaling law

Distributive law

Distributive and

ai.bi+aj.bit+aibjta,j.bj
abi.it+abj.itab,ij+ab,j.j Commutative laws

sothat (a,i+ayj).(bi+by)) = ab +ab,.

The result in 13.12(d) may be generalised, namely that

(ai+ aj+ak).(bi+bj+bk) = ab +ab,+ ab,

= coefficients of i multiplied

+ coefficients of j multiplied
+ coefficients of k multiplied.

Example 11.13
(a) (i+j-Kk).QGi+j-0k)y =1x3+1x1+(=1)x(-06)
=3+1+6=10.

1% 2+ 1% (=3)+ (—4)x 0
k in second bracket
2-34+0=-1.

The negative sign shows that the scalar product is

Coeffs of i multiplied
+ coeffs of j multiplied
+ coeffs of k multiplied

(b) (i+j-4k).(2i-3j)

a.b=|a|b|cosb
and|a|>0,|b|>0.

negative which means that cos 6 < 0, i.e. the angle

between the vectors is obtuse.

When vectors are expressed in terms of i, j, k the angle between the vectors is

easily found.
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Example 11.14
Find the angle between the vectors
a = itj-k
and b = i-2j-3k
Now a.b = |a|b|cosB
so that cos8 = Jabj
lal/b]
We find fa.b] = (i+j-k).(i-2j-3k)
= Ix1+1IxE2)+ (-1 %x(=3)
= 1-1+4+3=2

Also la] = YU+l +(=1) =3

b = 1P +(=2)+(=3) =14

2 2
Then cos = -
314 Ja2
so that 6 = 7202°

Example 11.15

Find the angle between the lines given by the vector equations
Y i+ 2§+ M- 3j - 2k),
r = 3i-j+upl-2j+2k).

i

The direction of the lines are given by the terms involving A and p i.e. by the
vectors

i~3j—2k,i-2j+ 2k
We find the angle between these vectors
Now cosf = M—.
laflb|

Then for the two vectors

(-3 2K)(i ~ 2+ 2K)

C i-3j-2k|[i-2j+2K]|

_ () (D) + (D)X (2)
VP (23)2 422412 4 (=2)? + 27

1464 3 1

Jiao  Yia Jia

74.50°

cos 0

I

0

There is another
method of doing this,
using another type of
product.

The scalar product enables us to determine a vector

perpendicular to two given vectors.
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Example 11.16

Giventhat a = 3i+2j—-kb=i-j+Kk,

find a unit vector ¢ perpendicular to both a and b.
Let ¢ = xi+yj+zk,
where x, y and z are constants to be determined.

Since ¢ is perpendicular to a,

ca. =0
So(xityi+zk).(Bi+2j-k) =0
so that Ix+2y—z = 0. e
Similarly c.b=290
gives
xityj+zk).(i-j+k) =0
so that x—y+z=0. (2)

We solve equation (1) and (2) for any two unknowns in terms of the third.
Adding (1) and (2), we obtain
dx+y =0
so that y = —4x
Substitute in (2) for y
. x—(-4x)+z=0

so that z = -5x,

Then writing y, z in terms of x in the vector ¢, we obtain
¢ = xi—4xj—-5xk
x(i— 4j - 5k) O]

Il

so that c

Then taking any non-zero value of x in (4), we obtain a vector perpendicular to
both a and ¢. In fact, the unit vector is required. The unit vector is
< x(i—4j-5Kk)
lel x4 (=4x)? +(=5x)°
_ x(i-4j-5k)

2

42x°
_ x(i—4j-5k)
x a2
(i—4j-5k)

N5
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Exercises 11.2

Find the scalar product of a and b given that |a|=2,| b | =5 and the angle

between the vectors is 150°.

Show that the vectors 2i — 3j + k and —i - j—k are perpendicular.
Find the projection of the vector i + 2j — k in the direction of the vector
4i + 3j — 2k.

Find the angles between the vector i—j + 3k and the x-axis, y-axis and
the z-axis.

Hint: i, j, k are vectors parallel to the axes.

Find a unit vector perpendicular to the vectors — 2i + 3j + 2k and 2i — 3j + k.
Find the angles between the pairs of lines given by the following equations.
(a) r=i+2j+xi-j+2k); r=i-j+uRi—j

(b)  r=3i-4j+k+Ai+2)); r=4i+pGi-4j+k)

Find the angles between the pairs of lines passing through the given points.
(a) (1,2,3),(-2,1,2); (-1, 2,-3), (0, 2, - 1)

(b) (1,0,1),(0,1,1);(1,0,0), (-1, 1, 1)

z, E ¢
£ D
Y
Glx B
(9] y » X

The figure shows a cube of side a. Taking axes OX, OV, OZ as shown and the
associated unit vectors i, j and k:

(a) write down the position vectors of 4, B, C, D, E and F,

(b) express the vectors BD, DF and GE in terms of i, j and k,

(c) find the angles between the lines DF and GE,

(d) find the angles between BD and OC.
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Revision Paper 1

Write down the expansion of (I—Bx)% in ascending powers of x up to and

including the term in x°.

X
V1-3x

including the term in x°. State the range of x for which the expansion is valid.

Hence obtain the expansion of in ascending powers of x up to and

(a) Express
x+4

— in terms of partial fractions.
(x+1)(x-2)

(b) Determine the equation of the normal to the curve
x+4

Y= 3
(x+D(x-2)
at the point (0, 1).

Find the values of x in the range 0° to 360° in the following:
(a) cos2x—cosx+1 =0,

(b) tan?x — 3 secx = 3.

Find % in the following cases.

(a) y = xsin”hx+v1-x2
(b)y  x2+3xy-—y? = 3.

(a)  Evaluate J tan2[%+x]dx.

0

(b) Use integration by parts to find

.[2 In xdx .
1

(c) Using the substitution »2 =1 + sin? 6, or otherwise, evaluate

i

Fsi113 0 cosOy1+sin?0do.
)
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A liquid is heated in such a way that its temperature x°C at time ¢ seconds

satisfies the differential equation

& w100 -x),
dt

where o is a positive constant.
The temperature at ¢ = 0 is 20°C.
(a)  Show that x = 100 — 80e™".

(b) Given that x = 80 when ¢ = 300, find the value of «.

The points 4, B, C, D and F have position vectors i + 11j, 2i + 8j, —i + 7j,
=21+ 8, and —4i + 6j, respectively. The lines 4B and D(C intersect at F.

(a) Show that the vector equation of the line AB 1s
r = (1+1)i+(11-3%)j,
where A is a parameter, and find the vector equation of the line DC.
(b) Show that the position vector of F'is
i+11j.
(c) Find the angle between D and £A4.
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Revision Paper 2

,
l-x—x"

Express —————
(1+2x)(1+x)”

as the sum of three partial fractions.

Hence or otherwise, expand this expression in ascending powers of x up to and
including the term in x°.

State the range of values of x for which the expansion is valid.

(a) By first writing cos 3x = cos(2x + x), show that
cos 3x= 4 cos’x—3cosx.
(b) Find all values of x between 0° and 360° satisfying

cos3x+2cosx = 0.

. 1y .. .
The point P(t,—) lies on the curve C given by xy = 1.
t

(a) Show that the equation of the tangent to C at the point P is
Py+x-2t =0
The tangent at P meets the x and y axes at 4 and B. Show that the area
of triangle A0B is independent of .
I . . . .
(b) S [S,—} is another point on C. Find the coordinates of U, the point of
s
intersection of the tangents at S and T.
If ¥ is the midpoint of PQ, show that the origin O and the points [/ and

V lie on a straight line.

The region bounded by the curve y = tan [gj, the linesx =0, x = % and the

x-axis 1s rotated about the x-axis through four right angles. Find the volume of

the solid generated.

(a) Use integration by parts to find J.xe‘*" dx.

(b) Use the substitution x = tan u to show that
V3
J : dx B \/5
0 (1 +x 2 )% 2
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The slope of a curve at a point (x, y) is equal to 2y%x.

(a) Write down a differential equation satisfied by y.

(b) Given that the curve passes through the point (1, 1), find y as a function

of x.

The vector equations of two lines are
r=2itj+r(i+j+2k)

and
r = 2i+2j+ak+p(i+2j+k),

where «a 1s a constant.

(a) Given that the two lines intersect, find « and the point of intersection of

the lines.

(b) find the angle between the lines, giving your answer correct to the

nearest degree.
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Revision Paper 3

L
2

Write down and simplify the binomial expansion of [1+£j up to and

including the term in x°. State the range of x for which the expansion is valid.
By putting x = —1, use your expansion to obtain an approximation to/3,

giving your answer as a ratio of two integers.

Use partial fractions to find
J 2x7+7x+3
(x=D(x+1)?

Find % in the following:

@ y=(an 'y
(b))  yY=x(x+2y)

(c) x=sect, y=tant+2,

Solve the following equations for values of x from 0° to 360° inclusive.

(a) 6sinx—2cosecx=1.

(b) sinx = 6 sin 2x.

Rewrite /3 cos®—sin® in the form R cos (0 + o), giving the values of R
and o.
(a) Find the values of 6 between 0° and 360° satisfying

ﬁcose—sine =1.

(b) Find the maximum and minimum values of
3

«/gcose—sin9+4

(a) By using the substitution x = 3sinb, or otherwise, evaluate
32
J x

0\/9—x2
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(b) (1) Given that ad;(sin x) = cosx, show that if y = sin 'x, then

1

dx 1=x’
(i)  Given that

b__ 7

dx yi-x?

and y=1whenx= %, find y in terms of x.

The vertices 4, B of the triangle OAB have position vectors a, b relative to O.
C and D are the midpoints of 04 and 4B respectively.

. o 1 1
(a) Show that the position vector of M, the midpoint of CD, is 3 a-+ " b.
{(b) Write down, in terms of @ and b and A, the position vector of the point

which divides BM in the ratio L : 1 — A. Hence find the position vector
of the point of intersection of BM and OD.
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Revision Paper 4

Find the expansion of
1-2x

V1+2x

in ascending powers of x up to the term in x°. State the range of values of x for

which the expansion is valid.

Use your expansion to find an approximate non-zero root of the equation

1-2x 2
—=1-2-99x+x".
V1+2x
(a) Express X7 interms of partial fractions.
(x-D(x+2)
(b) Find the points on the curve
3x-6

Y = D(x+2)

at which the tangents are parallel to the x-axis.

Solve the following equations for values of x between 0° and 360°.
(a) cot’x = 2 cosec x + 2.
(b) tan 2x = 4 tan x.

A curve is given in terms of the parameter ¢ by the equations

. i
x = asin?f, y = acost, O<t<5

where « 1s a positive constant.
. . . . dy
(a) Find and simplify an expression for d—)
t

) i
b The normal to the curve at the point where 1 = — cuts the x and y-axes
p 3 y

at the points M and N, respectively. Find the area of triangle OMN.

(a) Given that —d-(e\') = ¢¥ and by first finding Pdl, show that if
dx dy
y =Inx+a)
1

then & .
dx x+a
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(b) Find the equation of the tangent at the point (1, 2) for the curve given

by
yitxy = 12+ 6x4

The region bounded by the curve y=sin 2x, the lines x =0, x=12t— and

the x-axis is rotated about the x-axis through four right-angles. Find the

volume of the solid generated.

A population is growing in such a way that, at time ¢ years, the rate at which
the population is increasing is proportional to the size, x, of that population at
that time. Tnitially the size of the population is 4.

(a) Write down a differential equation describing the rate of growth of x.
(b)  Show that x = 4e", where k is a positive constant.

(c) After 6 years the population size is 100.
(1) show that k= %m 25.

(i)  Estimate the size of the population after 10 years.
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Revision Paper 5

(a) Express —&i in terms of partial fractions.
2x+3)°
. P o2x+1
(b) Find | ——dx
4(2x+3)°
(a) Find all values of 8 between 0° and 360° satisfying the equation
3¢cos9® + 2sin = 1.

(b) Given that tan2x = —1, show that tanx = 1 + +/2. Deduce the values of
tan 674 ° and tan 1571 © in surd form.

(a) A curve has parametric equations x = 3 sec £, y = 5 tan ¢. Find the
coordinates of the point on the curve at which the tangent to the curve
is parallel to the line y =2x.

. dy . .
b) Find Ey in the following cases:
(i) y =sin™" (3x)
i) Y +x’+x=3.
(a) Given that the derivative of tan x is sec’ x show that if
y=tan" x
then
d 1
de  1+x*
(b) Use the substitution # = ¢os x to evaluate
J 2 sin x2 .
o 1+cos” x
(© Find [(2x +1)e™"dx.
Given that

2 dy
cos  x— =1+
e y

and y=1whenx =0, find y in terms of x.
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Given that
(IT+ax)'=1+6x+06x+ ..,

find the values of @ and »n.

The points 4 and B have position vectors, relative to an origin O,
2i— 2§ — 7k and 4i -3j + 2Kk respectively.
(a) Show that OA4 and OB are perpendicular.
(b) Find the vector equation for the line AB.
(c) Show that A8 intersects the line given by
r=3-A)i+(=1+0j+(2-30k

and find the position vector of the point of intersection.
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Revision Paper 6

1f x is so large that —13— and higher powers of ! can be neglected, show that
X X
x+1 J

(x+2)° x x*

x-1 . . .
Express fix) = S S in terms of partial fractions.
(x+2)2x-1

Find f'(x).

(a) Show that tan 8 + cot 8 = 2 cosec 20.

(b) Using the result derived in (a), or otherwise, find all the values of x
between 0° and 180° satisfying

tanx + cotx = 8.

2
3

2 2
P (a cos’ 1, a sin’ 1) 1s a point on the curve C given by x3 + y> = a3,
)

{a) Show that the equation of the tangent to C at the point P is given by

yt+xtant = asint.

(b) The tangent at P meets the x and y axes at 4 and B, respectively. Find

the area of triangle AOB in terms of ¢ and show that the value of this

. 1
area lies between 0 and Zaz.

Find % in the following:

(a) y=1In(secx + tan x), expressing your answer in its simplest form;
(by  y=cos'(x—-1),

(©) X +siny+tay=1.

(a) (1) Use the substitution « =1 — x° to evaluate

J 55
0
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(11) Evaluate

|
J sin~' xdx
0
(b) Evaluate

J, cos? xdx
)

In the rectangle OABC, O4 = a and OC = ¢. R is a point on AB such
that AR: RB = 1:2 and Sis apoint on BC such that BS: SC = 3: 1.
AS meets OR at P.

oA

(a) Find an expression for OP in terms of a and ¢, and % where
OP:PR = A:1-A

(b) Show that OP: PR = 4:1.

(c) Find also the value of the ratio AP : PS.
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ANSWERS
Chapter 1
Exercise 1.1
-1, 1
Exercises 1.2
1. (@) 1-2x-2x 4%, [x‘<%
(b) 1 —dx+ 12x* - 32x%; ‘x‘<%
(c) 1+ 3x +9x° + 27X, |x[<%
; 2 3
@ Bl |x|<3
6 72 432
© L-Ei3ele Ix]< 2
4 4 16 &8
€3] l+—2£+i)c2+ 20 x’ |x|<2
3 27 8l 2187
x 5,
2 a - ———x"; x|< 1
(a) 573 | x|
21 1
b 2-2x+—x"; x|l< =
(b) 2 | x| 3
(c) 1+5x+27XV; |x|<l
2 2
(d) 1+ 3x+ 7 |x|<%
3. 1 1 1 Ix]|>1

+ - +—;
25 8x’  16x"
4. 1+2x; 3.60

5. oaes 2 L 0029
27 35

6. 5;~3

5

L 11 1
7. (1+x)? =1+—x——x> with x=———,/0.99 = 0.9950
27 8 100
XX x)<o.
18 648
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Chapter 2
Exercises 2.1
2~3~ 2 "
1. () x 731 +x+2 = T4 713x+9
x4+ 2x+1 x4+ 2x+1
4 g2 ; 2
(b) X 33x J:2x+1 - 36,\ +)7
X 4+3x +2 x T +3x" 42
3 a2 g2
©) 2,\3 3;\ +x+1 - a4 §+3)f 5x
x 4+x —-x-2 X H+x—x~-2
X 4 *4/3 -7 212 =9y —
d) 12x 3\ +12x - Ao a 1\3 x—5
4x7 ~3x+2 4x” —=3x+2
Exercise 2.2
A:?_’ B:‘—_]i
2 2
Exercises 2.3
1. (1) ! + ? (1) 2 — 1
S5(x+2) 5(x-3) x+3 x4+5
. 7
(111) 3 + : (iv) + !
Ax—-2) 4(x+2) S(x+2) 502x-1)
2 2 2 ) 3 2
e (vi) -
x=1 (x=1)" x-2 1-3x 1-2x
. 3
(vii) o b - (viil) ——— 2 -
x+1 x+2 (x+2) x+1 (x+1)
2. a=3,b=-1,¢c=17, 2 - 3
x—=1 x+2
3. i“ 2 6 1+ 6 36

5

Yt
x 3x-1 GBx=1)"" x* @Bx-1) (Bx-1)

32 22 32 22

4. a=4,b=2,¢c=26; -~ ;- —+ -
5(x=3) 5(x+2) 5(x=3)" S(x+2)

5. (a) 2 + ! : (b) Lo £x3,|x{<l
7(1+2x)  7(3-x) 39 27 2
1 i I 1 3 17
—— ~+ Lt e S B L
22-x) (2-x)7 2(4+x) 8 32 128
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Chapter 3

Exercises 3.1
1. (a) 45°, 63.4° (b) 30°, 150° (c) 45° 60°, 120°.

2. 70.5° 289.5°
3. (a)  45°225° 63.4° 243 4°
(b)  30°, 150°.
(c)  16.6° 163.4° 23.6°, 156.4°.
4. 39.2° 140.8°,30°, 150°.
5. 153.4°,333.4°,116.6° 296.6°, 71.6°, 251 .6°.

6. 30°, 330°.

1
7. —tan2x—x + C.

2

1 1

8. (a) —ECOt 2x+C (b) - ECOt 2x~-x+C.
9. — cosec x cot x
10. sec x tan x.

Exercises 3.2

1. —0.253°, 1.772°, -0.124° (" indicafes radian measure)

Chapter 4

Exercise 4.1
cos (4 + By= CR-NR_OR _NR _ OR0Q 50
OoP OoP OP OQOP OP
SQ PQ

cos4dcosB ————=
PO OP

cos A cos B —sin A sin B.

il

il

Exercises 4.2

L Q) % (if) ?g— (iii)  cos(® + 3¢)
(iv) sin4 v) cos B (vi) sind
(vi) 1

2. ) %575— (ii) —g— (i) ~2x47
(iv)  Sin135°= % (v)  105°
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3. 2sinA cos B; 45°,135°

4 2 tan?
l—tan~ 6

5. (1) 66.2,246.2 (i1) 67.5°, 247.5°
(1) 0, 180, 360° (iv)  50.7°,230.7°

Exercises 4.3
0,1,0.

Exercises 4.4

1. (1) sin 24° (i)  tan 30° (ili)  cos 48°
(iv)  sinx V) cos 40° (vi) tanx
(vii) cos 32° (viii) cos© (ix)  cos 60
(x) tan 8x
2. -2
3
. 2 .. 1 1
3, 6 __4,_1 (ii) _ ﬂ,_g (111) —\B’_l
25" 25 169" 169 2
4, (1) 0°,30°, 150°, 180°, 210°, 330, 360°
(i1) 14.5°,90°, 155.5°, 270°
5. 90°, 228.6°,311.4°
6. (1) 0°, 30°, 1507, 180°, 210°, 3307, 360°
(i1) 18.4°,161.6°, 198.4°, 341.6°.
Exercises 4.6
1. (a) 13, 67.4° (b) 10, 71.6°
(c) 42, 45° (d) 5, 53.1°
2. (a) 2,2 (b) 5,-5 (©) V10, —+10
1 1 1 1
(d —— —— () -, — () 25,0
3 ~2 3442 ( 4’10
3. (a) 0°,120°, 360° (b) 29.5°,256.7°
(c)  10° 124.8° d  7.9°,231.5°
(e)  26.2° 110.2° f) 1208, 173.2,300.8
4. 1 +cos20 +3smm26; 0, 71.6° 180°
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Chapter 5
Exercises 5.1

T FLE R —

4 1

5XA 2x—1)? 4x%(x% _1)%

Exercise 5.2

7 1 1

Exercise 5.3

1 1 a

1. 1) — (il) ——— (ii]) S
a’ —x’ \/7—7 X +a
. 2x 2x _ . 3
(iv) a v) - 4A (vi)  2xsin (1 —x) - X
1—x* x+1 2-x
Wil) —— (i) -1 (ix) 2 cosx-1
— -
24 x — x? Vi-x?
1 . —(x+1)
x ———— (xi)
2(1+ x7)Wtan™" x 1—x*
. 1 —2xtan™
(xi1)  —-— (x111) 1-2xtan x xa?nj i
x"+1 (1+x7)"
. 2sin' x
(xiv) sin’~ x V) - | 17 :
V1—x’ (tan™ x)"(1+x?)
Exercises 5.4
) X . 2 1
1. 1 - 11 —_— 111 [
0 - i @ -
: / —(2x+3y . X’
vy w TR oy -
x 3x+2y y
i)y — 2 (viiiy 2 (ix) -2
xX+3y° cosx+2y 3x
—2xy+y’ . 242y —2x
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X7+ 2xy 2y—2x+3
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3
3. -1
4., 1, -1
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Exercises 5.5

. . .. 1
1. i —cot 0 i - it —
(1) (1) e (i) ”
. 1 . 512
v cosec ¢ v ~ vi -
(iv) v) . (vi) 60+
5 . I
(vil) ~tant (viil) 2t-r (ix)y ——
t+1
2. (i) +1 (i) — () 1
. 1 2 . 4t 3
3. 1 -, t+1)° 1 — =
@ (t+1)° (t+1) @) 3 41
1 . . 3 2
111 - ;o 2sint v ——cott; —tant
() 2sint ) 2 3
Exercises 5.6
ELE 2. -2 3. —~3—cos ec’t
27a 4
4, cos’t 5. 22
143
6. I l,ﬁ ++/3 | maximum; —Sl - l,—SE ~ /3 | minimum
6 2°6 6 2 6
Chapter 6
Exercises 6.1
9 4 .
1. —5,~5 2, (Ssinf)y+@Bcos)x—15 =0
3 1 2
5. yH+px-2ap-ap =0; 2 6. Za
Chapter 7
Exercises 7.1
The constant of integration is omitted in each case.
2x+1) 1
(2) Qx+l) (b) —
6 3(3x+95)
(<) - —;—005(9)6 +1) (d) %tan(2x +9)
1 2 3
(e) 3 cosec 3x+ 1) ) 5(3x -7y
(g) %1nj2x+ 1 (h) 5\/9x+2
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Exercises 7.2

Answers

The constant of integration is omitted in each case.

(a)
(c)
(e)
(2)
()
(k)
(m)
(0)
(9)

Exercises 7.3

l 3 5
—(x" +1
15( )
1
2(x” +3)

%\/lerc2

1 .
—(1+e")*

4( )
l(x2+4v+l)%
3 )
In|x+x~3|
1

—(In x)’

2( )

In (&' + x)

sin® x
4

(b)
(@)
®
(h)
)
0
(n)
(p)

(r)

lln | x*+ 2

4

ltan()c“rl)

3

—cos (x* +x+5)
2 : 3

——=(1—sinx)?
3( )

21n11+x%|

3

%(Sin (2x) + 4y

Ini{l —cos x|

tan® x
3

——cot’x
2

The constant of integration is omitted in each case.

1. (a)

(©)
(e)

(g
(1)

(k)
(m)

(0)

(c)

1
3(x7 +1)

—y1-x’
-35—(2“1)1%«/2);“
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(b)

(d)
)

(h)
)
0
()

(»)

(b)

(d)

.ol x
sin” | —
2

2

—-V1l-x
V1+2sinx

%(x2+4)—31n|x2+4|

1.
—sin~ (2x
5 (2x)

—In |cos x|

1
—vx +1
2

25 . _1[£)+x\/25—x2
5 2

—sin
2



Answers

(e) %tan’l (3x) 63 - COS; al
(@) tan2_ a M o

. (a) %(x—2)%+20\/x—2 (b) %sin_‘(xz)

(x-1° +(x—l)7 (x+2) _(x+2)6

c d
(c) g 5 (d) - 5
1. x1-x7 4-x°
e —sin” x———— -
(©) 2 2 ® 4x
Chapter 8

Exercises 8.1

The constants of integration are omitted

1
(a) —Eln\3—2x\ (b) —m

5

(©) gln|3x+2|——
3 3(3x+2)

Exercises 8.2

The constant of integration is omitted in each case
3. (a) —L1n|3x+2|+gln|x—l|
15 5

®)  Sh|x-2|-12
x—2

(c) Injx -2+ 1In|x - 3]

(d) L1n|2x~3\—Lln|2x+3|
12 12

(e) 11n|4+/\| 1111|4 |
- (| —— —x
8 8

2 3
—In|[3x—4|—-=In|4x+3
O 3 \ \ 1 \ |

(g Infx|-
(h) In|x-1j-——"
X

1 1
1 —In|x|-——In|4-x
(1) 1 Il4 I |

4. —lln\l—x2|
2
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Answers

Exercises 8.3

The constant of integration is omitted in each case

1. (a) — XxCosx +sinx (b) (x> =2)sinx + 2xcosx
' = <
c xe' d —In(2x) ——
() «x (d) A (2x) e
(e) —(x* +2x+2e" ) xsin™ x ++1-x"
) xlnx —x (h) %xsin 2x+ %cos 2x
(1) —l(n—x)cos3x~lsin3x
3 9
2. ~i 1—x?sin™ x+lx
2 2
Exercises 8.4
1 T
1. 2 b — 1—671 C —
(a) (b) 2( ) (©) 1
1 1 1
d 5 ¢ = In2-=—
(d) 5 (e) 3 D 1
T T
- I NE) i n
(8) 3 (h) (1) 20
32 31 1 5
' -2 k ~In2-— ] —(1-3¢™*
0) n (k) s 2= M 4( e’)
1
2 1 3 1 4, —In2
2
3 Tt
5 1 6 B
NI )
Exercises 8.5
167 73n
1. a — b —_— c 87
(a) 3 (b) T (©)
167 i
d —_ e il
(d) T (e) 5
19
2. (a) ?n (b) 8m (c) 8n
327
d i
(d) 5
3 n[z+1] 4 65_7'[ 5 —mrh
4
6 %TEVB,’TEI



Answers

Chapter 9

Exercises 9.1

1.

Only (a) and (c) are directly integrable

(a) y=X+%+k (©) x=-~tcost+sint+k

x=2smn2t+1
—xz ln)c—x2 +9
Y 2 4 4

c=x -6x'+15x+50, £6
.

(a) y=—e"-1 (b)) y=-cosx —f2i+? (©) y=xsinx+cosx+2

Exercises 9.2

-1

1_ ) =

) *+C
2. y =—§1n(4-3e"‘)
3. y=sin"' (4~ sin x)

¥y 2x°
4. ~—+—In(y) = + A

7 Ho )
5. 10 minutes
6. 1=—1| 27 Liss
4k \8-2x)8

7. y=3+x
Chapter 10
Exercises 10.1
(1) No (1) No () No (iv)  No v) Yes (vi)  Yes
(vit) No (viii)) No (1x)  Yes
Exercises 10.2
1. Sum of lengths of two sides of a triangle is greater than the length of the thurd

side. Equality occurs when a and b are parallel.

The sides of hexagon are given by the vectors a, b, b—-a, —a, -b, a~b.

EB=3b, EC=a+3b, DB=4b—-a, AC=4b+a, FB=3b-a.
4, AB=b-a, AC=c¢c-a, AE:l(b4a), EF:lc—la—i b.

2 3 6 6

5. AB=b-a, BC=a-4b, AD=3a+bh.
6. 1) %(Za -b) (i1) %(b —3a)
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Answers

Exercises 10.3

1. (a) %(2a—c) b) %(83—3b—3c) (c) 3b-2a
2. i(a +b +c)
3. (a 2b3+° ®)  6:1

Exercises 10.4

1. (1) (1-Ma+ib,(1-we+ua+b-c)

. 1 1
11 —a+—b
(11) S5

2. (a) (lfl)a+—7ib+&c, E+ 1—£ b+ ue
2 2 2 2

2
(b) l21+—b+gc
5 5 5
4 %a+lb
5 5

L@ kA2 (i) 11i-7j+10k; 4270
. I ] k . 2. 1.
2. (1) —t =t (i1) ——=i+—] (i)
NERVERNE] Js s
3. a=2,b=06¢c=-0
4 3; V54
Chapter 11

Exercises 11.1

1. (a) r=C2+A)i+(1-2)j+0-1k
(b) r=(1+30i+(1+20)j+rk
(c) r=ai+ (1+A)j+2Ak
(d) r=3M+Aj+ Ak

2. (a) r=(1+A)i+(1-1)j+(3+06r)k
(by r=(1+20)i+j+(1 -3k
(c) r=>5Ai-32j+ 2k
(d) r=(2-42)i+ (1 +2x)j+ 2k
3. (a) parallel (b) not parallel

4, r=@{+2mi+j(l-n)+k

5. (a) Yes,atr=2i—j—-k (b) No (c) No

170



Answers

Exercises 11.2

1. -5
. 2
V29
4. 72.5°, 107.5°, 252°
5. —1-(31 +27
V13
6. (a) 56.7° (b) 116.0°
7. (a) 132.4° (b) 30°
8. () ai, ai+aj, ai-aj+ak, ai+ak, aj, ajtak

(b) ak —aj, —ai+aj, —ajt+ak
(c) 120°
(d) 90°

17



Index

INDEX
Angle between two vectors 144 Separating the variables 102
Binomial expansion 2 Trigonometric
equations 36, 37

Cartesian form 1dentities 22,31, 32, 36

of the equation of a line 133
Compound angles 30 Vectors
Cover up rule 12 position 117

scalar product of 140

Differentiation

of implicit functions 49

of inverse functions 42

of functions defined

parametrically 51,53
Equations

of a tangent and normal 57,63

differential 98
Fractions

partial 14

proper 10
Integration

by parts 84, 86

by substitution 68, 74

of fractions &3
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