

GCE AS/A level

0978/01

MATHEMATICS – FP2 Further Pure Mathematics

P.M. TUESDAY, 16 June 2015 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- · a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) **Express**

$$\frac{5}{\left(x^2+1\right)\left(2-x\right)}$$

in partial fractions.

[4]

Using the substitution $u = \tan x$ and the result in (a), evaluate the integral (b)

$$\int_0^{\frac{\pi}{4}} \frac{5}{2 - \tan x} \, \mathrm{d}x.$$

Give your answer correct to three significant figures.

[9]

The function *f* is defined by 2.

$$f(x) = ax^3 + bx \qquad \text{for } x \le -1,$$

for
$$x \leq -1$$
,

$$f(x) = x^2 - x + 2$$
 for $x > -1$.

for
$$x > -1$$
.

- Given that f and its derivative are both continuous at x = -1, determine the values of the (a) constants $\overset{\circ}{a}$ and b.
- The equation f(x) = 0 has exactly one root. Determine its value. (b)

[2]

[3]

- The complex number $z = 2\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$.
 - Find the three cube roots of z, giving your answers in the form x + iy, with x and y correct to three decimal places. [6]
 - Find the smallest positive integer n for which z^n is (b)
 - (i) real,

imaginary. (ii)

Find the general solution to the equation

$$\cos\left(\theta + \frac{\pi}{6}\right) + \cos\left(2\theta + \frac{\pi}{6}\right) + \cos\left(3\theta + \frac{\pi}{6}\right) = 0.$$
 [8]

Differentiate the following integrals with respect to *x*.

(a)
$$\int_0^x e^{\sqrt{u}} du$$
 [1]

$$\int_0^{x^2} e^{\sqrt{u}} du$$
 [3]

(c)
$$\int_{-\infty}^{x^2} e^{\sqrt{u}} du$$
 [2]

© WJEC CBAC Ltd.

6.	The point $P(x, y)$ moves in such a way that its distance from the point $(0, 3)$ is equal to its distance from the line $y + 3 = 0$.			
	(a)	Shov	w that the locus of P is the curve C with equation $x^2 = 12y$.	[2]
	(b)	(i)	Show that the point $(6t, 3t^2)$ lies on C for all values of t .	
		(ii)	Show that the equation of the tangent to C at the point $(6t, 3t^2)$ is $y = tx - 3t^2$.	
		(iii)	Find the values of t for which the tangent passes through the point $(0, -12)$.	
		(iv)	Hence find the angle between the two tangents to ${\cal C}$ from the point $(0,-12)$.	[9]
7. The function f is defined by				
	$f(x) = \frac{1}{x-1} - \frac{4}{x-2}.$ (a) Write down the equations of the vertical asymptotes on the graph of f .			
				[1]
	(b)	Find	the points of intersection of the graph of f with the coordinate axes.	[3]
	(c) Find the coordinates of the stationary points on the graph of f and classify each			nt as

(d) Sketch the graph of f. [2]

[8]

(e) The set S = [-1, 0]. Determine

a maximum or a minimum.

(i) f(S),

(ii) $f^{-1}(S)$. [6]

END OF PAPER