

GCE AS/A level

0982/01

MATHEMATICS – M3 Mechanics

A.M. MONDAY, 22 June 2015 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- · a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Take g as $9.8 \,\mathrm{ms}^{-2}$.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

- 1. A particle of mass 400 kg moves along a straight horizontal road under the action of a horizontal force F. The magnitude of the force F may be modelled by $500\left(\frac{x}{v+2}\right)$ N, where v ms⁻¹ is the speed of the particle and x m is the distance of the particle from a point O on the road.
 - (a) Show that the motion of the particle satisfies the differential equation

$$4v(v+2)\frac{\mathrm{d}v}{\mathrm{d}x} = 5x.$$
 [2]

- (b) When x = 0, the particle is at rest.
 - (i) Find an expression for x in terms of v.
 - (ii) Find the distance of the particle from O and the acceleration of the particle when its speed is 3 ms⁻¹. [9]
- 2. (a) An object of mass $0.5 \,\mathrm{kg}$ is initially moving along the positive x-axis away from the origin O. The object moves under the action of a force of magnitude $6.5x \,\mathrm{N}$ which is directed towards O. The resistance to motion of the object is $2v \,\mathrm{N}$, where $v \,\mathrm{ms}^{-1}$ is the velocity of the object at time t seconds.
 - (i) Show that the equation of motion of the object is

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0.$$

(ii) Find an expression for x in terms of t given that x = 6 and $\frac{dx}{dt} = 3$ when t = 0.

Determine the approximate value of x when t is large.

(b) Find the general solution of the differential equation

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 91t + 15.$$
 [4]

[9]

- **3.** A body of mass 250 kg is dropped from a hot air balloon and falls vertically downwards. During the downward motion, the body is subjected to a resistance to motion of 50vN, where vms^{-1} is the speed of the body at time t seconds. The initial speed of the body may be assumed to be zero.
 - (a) Show that the motion of the body satisfies the differential equation

$$5\frac{\mathrm{d}v}{\mathrm{d}t} = 5g - v.$$
 [2]

- (b) Find an expression for v in terms of t. Determine the speed of the body when t = 5. [7]
- (c) Find an expression for x, the distance in metres fallen by the body in t seconds. Hence calculate the distance fallen by the body in 5 seconds. [5]

4. The diagram shows a particle *P*, of mass 7·5 kg, lying on a smooth horizontal surface. It is attached by two light springs to points *A* and *B* where *AB* is 1·4 m. Spring *AP* has natural length 0·3 m and modulus of elasticity 15 N. Spring *BP* has natural length 0·6 m and modulus of elasticity 20 N.

When *P* is in equilibrium, it is at the point *C*.

(a) Show that $AC = 0.5 \,\mathrm{m}$.

[5]

- (b) The particle P is pulled horizontally towards B a distance $0.25\,\mathrm{m}$ from C and released.
 - (i) Show that the subsequent motion of the particle is Simple Harmonic with period $\frac{3\pi}{5}$ seconds.
 - (ii) Write down the amplitude of the motion.
 - (iii) Determine the speed of P when it is $0.2 \,\mathrm{m}$ from C.
 - (iv) Find the shortest time taken for P to reach a position where it is $0.2 \,\mathrm{m}$ from C.

[12]

5. Two particles A and B, of mass $3 \, \text{kg}$ and $5 \, \text{kg}$ respectively, are attached one to each end of a light inextensible string of length $\sqrt{3} \, l$ m. Initially, the particles are at rest on a smooth horizontal surface a distance l m apart, as shown in the diagram. Particle B is then projected horizontally with speed $8 \, \text{ms}^{-1}$ at an angle of 60° to the line joining the initial positions of A and B produced.

Immediately after the string becomes taut,

- (a) show that the particle A starts to move in a direction which makes an angle of 30° with the line joining the initial positions of A and B. [2]
- (b) find the speed with which each particle begins to move and determine the magnitude of the impulsive tension in the string. [9]

TURN OVER

6. A uniform ladder of mass 20 kg and length 6 m rests with its top end against a smooth vertical wall and its bottom end on rough horizontal ground. The ladder is inclined at an angle θ to the horizontal. The coefficient of friction between the ladder and the ground is 0·6. A man of mass 80 kg climbs the ladder. When he reaches $\frac{5}{6}$ of the way up, the ladder is in limiting equilibrium.

Calculate the normal reaction at the wall and the value of θ . State one modelling assumption you have made about the ladder in your solution. [9]

END OF PAPER