

CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol
Uwch Gyfrannol/Uwch

983/01

MATHEMATICS S1

Statistics

P.M. TUESDAY, 18 January 2005

 $(1\frac{1}{2}\text{hours})$

NEW SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator:
- statistical tables (Murdoch and Barnes or RND/WJEC Publications)

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1.	A bag contains 12 sweets of which 5 are red, 4 are green and 3 are yellow. A boy chooses 3 of these sweets at random without replacement . Find the probability that					
	(a)	he chooses 3 red sweets,	[2]			
	(b)	he chooses no red sweets,	[2]			
	(c)	he chooses 1 sweet of each colour.	[3]			
2.		discrete random variable X has the binomial distribution B (48, 0.25). The random variable by	variable <i>Y</i>			
		Y=2X-1.				
	Find	the mean and the standard deviation of <i>Y</i> .	[7]			
3.	mode that,	number of emergency admissions into a certain hospital during a 24-hour periodelled by a Poisson distribution with mean 4. Use an appropriate table to find the paduring a randomly selected 24-hour period, the number of emergency admissions of ital is	robability			
	(a)	less than 6,	[2]			
	<i>(b)</i>	exactly 3.	[3]			
4.	The	events A and B are such that				
		$P(A) = 0.2$, $P(B) = 0.6$ and $P(A \mid B) = 0.3$.				
	Find					
	(a)	$P(A \cap B)$,	[2]			
	(b)	$P(B \mid A)$,	[3]			
	(c)	$P(A \cup B)$.	[3]			
	(d)	$P(A'\cap B')$.	[2]			
5.	facul	estimated that 0.7% of the population of university students have a rare blood disc lty of 550 such students, use a Poisson approximation to find the probability that the rents with this disease is				
	(a)	exactly 4,	[4]			

[4]

(b)

more than 2.

6. A desk has 3 drawers. Drawer A contains 3 gold medals. Drawer B contains 2 gold medals and 1 silver medal. Drawer C contains 1 gold medal and 2 silver medals. Two fair coins are tossed and a drawer is chosen as follows.

Drawer A is chosen if two heads are obtained.

Drawer B is chosen if two tails are obtained.

Drawer C is chosen if one head and one tail are obtained.

- (a) Write down the probabilities of choosing Drawer A, Drawer B and Drawer C. [2]
- (b) A medal is then selected at random from the chosen drawer.
 - (i) Find the probability that the selected medal is gold.
 - (ii) Given that this medal is gold, find the probability that it came from Drawer A. [6]
- 7. A scientist researching a new breed of chicken knows that the probability of a newly born chick of the breed being female is 0.6. Let *X* denote the number of female chicks in a batch of 20 randomly chosen newly born chicks. Find

(a)
$$P(X = 12)$$
, [3]

(b)
$$P(9 \le X \le 15)$$
. [4]

8. The following table gives the probability distribution of the discrete random variable X, where a and b are positive constants.

X	1	2	3	4	5
P(X = x)	0.1	а	b	0.3	0.2

(a) Show that

$$a + b = 0.4.$$
 [2]

[5]

- (b) Given that E(X) = 3.4,
 - (i) write down and simplify another equation for a and b,
 - (ii) find the values of a and b.

(c) Evaluate
$$E\left(\frac{1}{1+X}\right)$$
. [3]

TURN OVER

9. The continuous random variable X has probability density function f where

$$f(x) = \frac{1}{21} x^2$$
, for $1 \le x \le 4$,
 $f(x) = 0$, otherwise.

- (a) Evaluate E(X). [4]
- (b) Find an expression for F(x), valid for $1 \le x \le 4$, where F denotes the cumulative distribution function of X. [3]
- (c) Calculate $P(2 \le X \le 3)$. [3]
- (d) Find the median of X correct to two decimal places. [3]